395 research outputs found

    Phasespace Correlations of Antideuterons in Heavy Ion Collisions

    Get PDF
    In the framework of the relativistic quantum molecular dynamics approach ({\small RQMD}) we investigate antideuteron (d‾\overline{d}) observables in Au+Au collisions at 10.7~AGeV. The impact parameter dependence of the formation ratios d‾/p‾2\overline{d}/\overline{p}^2 and d/p2{d}/{p}^2 is calculated. In central collisions, the antideuteron formation ratio is predicted to be two orders of magnitude lower than the deuteron formation ratio. The d‾\overline{d} yield in central Au+Au collisions is one order of magnitude lower than in Si+Al collisions. In semicentral collisions different configuration space distributions of p‾\overline{p}'s and d‾\overline{d}'s lead to a large ``squeeze--out'' effect for antideuterons, which is not predicted for the p‾\overline{p}'s

    Unmasking features of the auto-epitope essential for β(1)-adrenoceptor activation by autoantibodies in chronic heart failure

    Get PDF
    AIMS: Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β(1)-adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine-map the conformational epitope within the second extracellular loop of the human β(1)-adrenoceptor (β(1) EC(II)) that is targeted by stimulating β(1)-receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto-epitope. METHODS AND RESULTS: Non-conserved amino acids within the β(1) ECII loop (compared with the amino acids constituting the ECII loop of the β(2)-adrenoceptor) were one by one replaced with alanine; potential intra-loop disulfide bridges were probed by cysteine-serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β(1) ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β(1)-adrenoceptors bearing corresponding point mutations. With the use of stimulating β(1)-receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β(1) ECII loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK(211-214) motif and (ii) the intra-loop disulfide bond C(209)↔C(215). Of note, aberrant intra-loop disulfide bond C(209)↔C(216) almost fully disrupted the functional auto-epitope in cyclopeptides. CONCLUSIONS: The conformational auto-epitope targeted by cardio-pathogenic β(1)-receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β(1) EC(II) loop bearing the NDPK(211-214) motif and the C(209)↔C(215) bridge while lacking cysteine C(216). Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β(1)-autoantibody-positive CHF

    Are we close to the QGP? - Hadrochemical vs. microscopic analysis of particle production in ultrarelativistic heavy ion collisions

    Get PDF
    Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.Comment: 12 pages, 4 figure

    Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

    Get PDF
    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana ​K+ efflux antiporter (​KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, ​kea3 mutants show prolonged dissipation of absorbed light energy as heat. ​KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. ​KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased ​CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. [EN]This project was funded by the Carnegie Institution for Science, by ERDF-cofinanced grants from the Ministry of Economy and Competitiveness (BIO2012-33655) and Junta de Andalucia (CVI-7558) to K.V., the Natural Sciences and Engineering Research Council of Canada (NSERC) PGS-D3 scholarship to L.P. and Deutsche Forschungsgemeinschaft grants (JA 665/10-1 and GRK 1525 to P.J.; AR 808/1-1 to U.A.).Peer reviewe

    Lambda flow in heavy-ion collisions: the role of final-state interactions

    Get PDF
    Lambda flow in Ni+Ni collisions at SIS energies is studied in the relativistic transport model (RVUU 1.0). It is found that for primordial lambdas the flow is considerably weaker than proton flow. The inclusion of final-state interactions, especially the propagation of lambdas in mean-field potential, brings the lambda flow close to that of protons. An accurate determination of lambda flow in heavy-ion experiments is shown to be very useful for studying lambda properties in dense matter.Comment: 14 pages, LaTeX, figures available from [email protected], to appear in Phys. Rev.

    Antiproton Production in p+Ap+A Collisions at AGS Energies

    Full text link
    Inclusive and semi-inclusive measurements are presented for antiproton (pˉ\bar{p}) production in proton-nucleus collisions at the AGS. The inclusive yields per event increase strongly with increasing beam energy and decrease slightly with increasing target mass. The pˉ\bar{p} yield in 17.5 GeV/c p+Au collisions decreases with grey track multiplicity, NgN_g, for Ng>0N_g>0, consistent with annihilation within the target nucleus. The relationship between NgN_g and the number of scatterings of the proton in the nucleus is used to estimate the pˉ\bar{p} annihilation cross section in the nuclear medium. The resulting cross section is at least a factor of five smaller than the free pˉ−p\bar{p}-p annihilation cross section when assuming a small or negligible formation time. Only with a long formation time can the data be described with the free pˉ−p\bar{p}-p annihilation cross section.Comment: 8 pages, 6 figure

    Collective Flow from the Intranuclear Cascade Model

    Get PDF
    The phenomenon of collective flow in relativistic heavy ion collisions is studied using the hadronic cascade model ARC. Direct comparison is made to data gathered at the Bevalac, for Au+Au at p=1−2p=1-2 GeV/c. In contrast to the standard lore about the cascade model, collective flow is well described quantitatively without the need for explicit mean field terms to simulate the nuclear equation of state. Pion collective flow is in the opposite direction to nucleon flow as is that of anti-nucleons and other produced particles. Pion and nucleon flow are predicted at AGS energies also, where, in light of the higher baryon densities achieved, we speculate that equation of state effects may be observable.Comment: 9 pages, 2 figures include

    Real-time simulation and control systems design by the Response Surface Methodology and designed experiments

    Get PDF
    This paper examines two cases where the fitting of a model to experimental data makes possible the solution of extremely difficult design and simulation problems. In the first (aerospace) case, designed experiments were conducted on a permanent magnet AC motor which provided the motive power for a flight surface actuator in a more electric aircraft application. The Response Surface Methodology is applied to the measured data to achieve inclusion of the component in a real-time distributed aircraft simulation. In the second (automotive) case, oscillatory acceleration responses are controlled via an electronically actuated (drive by wire) throttle. Designed experiments were conducted on the test vehicle to achieve a systematic excitation of the vehicle driveline. An approximation to the measured data is achieved by the Response Surface Methodology allowing a controller to be designed extremely rapidly
    • …
    corecore