91 research outputs found
Bites by exotic snakes reported to the UK National Poisons Information Service 2009-2020
Introduction:
Snakebite is recognised as a neglected tropical disease and a cause of substantial morbidity and mortality. Whilst the most medically important snakes are typically native of Asia, Africa, Latin America and Oceania, the possibility of encountering these snakes is no longer limited by geography due to an increasing number of exotic (non-native) snakes being held in captivity.
Methods:
A retrospective review of snakebite enquiries to the UK National Poisons Information Service (NPIS) between 2009 and 2020. Enquiries about the European adder (Vipera berus) or where the identity of the snake was unknown were excluded.
Results:
There were 321 exotic snakebites in 300 patients involving 68 different species during this period. Ten patients were bitten on more than one occasion. The majority of patients (64.5%) were male. Most bites were inflicted by snakes of the family Colubridae (184/321, 57.3%); seventeen bites resulted in moderate symptoms (predominantly swelling of the bitten limb). There were 30 (9.3%) bites by Viperidae and 14 (4.3%) bites by Elapidae. All severe cases (nโ=โ15) resulted from bites by either Viperidae (nโ=โ10) or Elapidae (nโ=โ5). Antivenom was given in 17 cases. One fatality was recorded.
Conclusions:
Despite their low incidence, exotic snakebites present a substantial challenge for UK healthcare professionals. Although rare, these bites typically occur in individuals (usually male) who keep snakes as part of their occupation or hobby and are therefore at risk of multiple bites. Bites can result in venom hypersensitisation and the risk of venom-induced anaphylaxis. Rapid access to expert clinical advice is available in the UK on a 24-hour basis through the National Poisons Information Service and is strongly recommended in all cases of exotic snakebite
Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI).
AIM: Despite prompt revascularization of acute myocardial infarction (AMI), substantial myocardial injury may occur, in part a consequence of ischaemia reperfusion injury (IRI). There has been considerable interest in therapies that may reduce IRI. In experimental models of AMI, sodium nitrite substantially reduces IRI. In this double-blind randomized placebo controlled parallel-group trial, we investigated the effects of sodium nitrite administered immediately prior to reperfusion in patients with acute ST-elevation myocardial infarction (STEMI).
METHODS AND RESULTS: A total of 229 patients presenting with acute STEMI were randomized to receive either an i.v. infusion of 70 ฮผmol sodium nitrite (n = 118) or matching placebo (n = 111) over 5 min immediately before primary percutaneous intervention (PPCI). Patients underwent cardiac magnetic resonance imaging (CMR) at 6-8 days and at 6 months and serial blood sampling was performed over 72 h for the measurement of plasma creatine kinase (CK) and Troponin I. Myocardial infarct size (extent of late gadolinium enhancement at 6-8 days by CMR-the primary endpoint) did not differ between nitrite and placebo groups after adjustment for area at risk, diabetes status, and centre (effect size -0.7% 95% CI: -2.2%, +0.7%; P = 0.34). There were no significant differences in any of the secondary endpoints, including plasma troponin I and CK area under the curve, left ventricular volumes (LV), and ejection fraction (EF) measured at 6-8 days and at 6 months and final infarct size (FIS) measured at 6 months.
CONCLUSIONS: Sodium nitrite administered intravenously immediately prior to reperfusion in patients with acute STEMI does not reduce infarct size
Protocol: does sodium nitrite administration reduce ischaemia-reperfusion injury in patients presenting with acute ST segment elevation myocardial infarction? Nitrites in acute myocardial infarction (NIAMI)
BACKGROUND: Whilst advances in reperfusion therapies have reduced early mortality from acute myocardial infarction, heart failure remains a common complication, and may develop very early or long after the acute event. Reperfusion itself leads to further tissue damage, a process described as ischaemia-reperfusion-injury (IRI), which contributes up to 50% of the final infarct size. In experimental models nitrite administration potently protects against IRI in several organs, including the heart. In the current study we investigate whether intravenous sodium nitrite administration immediately prior to percutaneous coronary intervention (PCI) in patients with acute ST segment elevation myocardial infarction will reduce myocardial infarct size. This is a phase II, randomised, placebo-controlled, double-blinded and multicentre trial.
METHODS AND OUTCOMES: The aim of this trial is to determine whether a 5 minute systemic injection of sodium nitrite, administered immediately before opening of the infarct related artery, results in significant reduction of IRI in patients with first acute ST elevation myocardial infarction (MI). The primary clinical end point is the difference in infarct size between sodium nitrite and placebo groups measured using cardiovascular magnetic resonance imaging (CMR) performed at 6-8 days following the AMI and corrected for area at risk (AAR) using the endocardial surface area technique. Secondary end points include (i) plasma creatine kinase and Troponin I measured in blood samples taken pre-injection of the study medication and over the following 72 hours; (ii) infarct size at six months; (iii) Infarct size corrected for AAR measured at 6-8 days using T2 weighted triple inversion recovery (T2-W SPAIR or STIR) CMR imaging; (iv) Left ventricular (LV) ejection fraction measured by CMR at 6-8 days and six months following injection of the study medication; and (v) LV end systolic volume index at 6-8 days and six months.
FUNDING,ETHICS AND REGULATORY APPROVALS: This study is funded by a grant from the UK Medical Research Council. This protocol is approved by the Scotland A Research Ethics Committee and has also received clinical trial authorisation from the Medicines and Healthcare products Regulatory Agency (MHRA) (EudraCT number: 2010-023571-26)
Advanced demand and a critical analysis of revenue management
Pre-print; author's draftThis paper presents a theoretical framework of advanced demand through six propositions. The framework introduces the concept of acquisition and valuation risks and suggests that advanced demand distribution is rooted in the trade off between them. Furthermore, since advanced buyers may not consume, firms may be able to re-sell capacity relinquished. The study then proposes how refunds could provide additional revenue to firms.
The study further suggests theoretical reasons why and when service firms are able to practice revenue management, suggesting that RM tools such as overbooking and demand forecasting may not be the only tools for higher revenue
Cohort profile for the STratifying Resilience and Depression Longitudinally (STRADL) study:A depression-focused investigation of Generation Scotland, using detailed clinical, cognitive, and neuroimaging assessments
Grant information: STRADL is supported by the Wellcome Trust through a Strategic Award (104036/Z/14/Z). GS:SFHS received core support from the CSO of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). ADM is supported by Innovate UK, the European Commission, the Scottish Funding Council via the Scottish Imaging Network SINAPSE, and the CSO. HCW is supported by a JMAS SIM Fellowship from the Royal College of Physicians of Edinburgh, by an ESAT College Fellowship from the University of Edinburgh, and has received previous funding from the Sackler Trust. LR has previously received financial support from Pfizer (formerly Wyeth) in relation to imaging studies of people with schizophrenia and bipolar disorder. JDH is supported by the MRC. DJM is an NRS Clinician, funded by the CSO. RMR is supported by the British Heart Foundation. ISP-V and MRM are supported by the NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health; and MRM is also supported by the MRC MC_UU_12013/6). JMW is supported by MRC UK Dementia Research Institute and MRC Centre and project grants, EPSRC, Fondation Leducq, Stroke Association, British Heart Foundation, Alzheimer Society, and the European Union H2020 PHC-03-15 SVDs@Target grant agreement (666881). DJP is supported by Wellcome Trust Longitudinal Population Study funding (216767/Z/19/Z) the Eva Lester bequest to the University of Edinburgh. AMM is additionally supported by the MRC (MC_PC_17209, MC_PC_MR/R01910X/1, MR/S035818/1), The Wellcome Trust (216767/Z/19/Z ), The Sackler Trust, and has previously received research funding from Pfizer, Eli Lilly, and Janssen. Both AMM and IJD are members of The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1); funding from the BBSRC and MRC is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewedPublisher PD
- โฆ