33 research outputs found
Implications of H.E.S.S. observations of pulsar wind nebulae
In this review paper on pulsar wind nebulae (PWN) we discuss the properties
of such nebulae within the context of containment against cross-field diffusion
(versus normal advection), the effect of reverse shocks on the evolution of
offset ``Vela-like'' PWN, constraints on maximum particle energetics, magnetic
field strength estimates based on spectral and spatial properties, and the
implication of such field estimates on the composition of the wind. A
significant part of the discussion is based on the High Energy Stereoscopic
System ({\it H.E.S.S.} or {\it HESS}) detection of the two evolved pulsar wind
nebulae Vela X (cocoon) and HESS J1825-137. In the case of Vela X (cocoon) we
also review evidence of a hadronic versus a leptonic interpretation, showing
that a leptonic interpretation is favored for the {\it HESS} signal. The
constraints discussed in this review paper sets a general framework for the
interpretation of a number of offset, filled-center nebulae seen by {\it HESS}.
These sources are found along the galactic plane with galactic latitudes
, where significant amounts of molecular gas is found. In these
regions, we find that the interstellar medium is inhomogeneous, which has an
effect on the morphology of supernova shock expansion. One consequence of this
effect is the formation of offset pulsar wind nebulae as observed.Comment: to appear in Springer Lecture Notes on Neutron Stars and Pulsars: 40
years after their discovery, eds. W. Becke
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
Acceleration of Relativistic Protons during the 20 January 2005 Flare and CME
The origin of relativistic solar protons during large flare/CME events has
not been uniquely identified so far.We perform a detailed comparative analysis
of the time profiles of relativistic protons detected by the worldwide network
of neutron monitors at Earth with electromagnetic signatures of particle
acceleration in the solar corona during the large particle event of 20 January
2005. The intensity-time profile of the relativistic protons derived from the
neutron monitor data indicates two successive peaks. We show that microwave,
hard X-ray and gamma-ray emissions display several episodes of particle
acceleration within the impulsive flare phase. The first relativistic protons
detected at Earth are accelerated together with relativistic electrons and with
protons that produce pion decay gamma-rays during the second episode. The
second peak in the relativistic proton profile at Earth is accompanied by new
signatures of particle acceleration in the corona within approximatively 1
solar radius above the photosphere, revealed by hard X-ray and microwave
emissions of low intensity, and by the renewed radio emission of electron beams
and of a coronal shock wave. We discuss the observations in terms of different
scenarios of particle acceleration in the corona.Comment: 22 pages, 5 figure
Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons
Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices Γ≲ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth