188 research outputs found

    INFLUENCE OF HYDRATED SODIUM CALCIUM ALUMINOSILICATE AND ACTIVATED CHARCOAL ON THE PHARMACOKINETICS OF SINGLE PULSE DOSING OF ENROFLOXACIN IN BROILER CHICKEN

    Get PDF
    ABSTRACTObjective: The present study was undertaken to evaluate the interaction kinetics of enrofloxacin, the commonly used antibacterial in poultry withmycotoxin binders namely hydrated sodium calcium aluminosilicate (HSCAS) and activated charcoal (AC), which have become inevitable componentsof poultry feed.Methods: Control group received normal feed free of toxin binder, whereas HSCAS and AC group were supplemented with HSCAS and AC at 0.5% infeed, respectively. Enrofloxacin was administered as single pulse dose (at 10 mg/kg) through drinking water to all the groups. Blood samples werecollected at predetermined time intervals after drug administration, and plasma was separated and analyzed for enrofloxacin concentrations usinghigh-performance liquid chromatography.Results: Significant decrease in area under the plasma concentration-time curve (AUC0-∞)was noticed in AC group when compared to control group(13.90±1.15 vs. 19.67±1.68 mg.h/ml), whereas HSCAS group (16.42±1.24 mg.h/ml) neither differed significantly from AC nor control group. Thevolume of distribution and clearance were significantly high in AC group when compared to control group (8.31±0.89 vs. 6.39±0.13 l/kg; 0.77±0.07 vs.0.53±0.05 l/h/kg). HSCAS group was intermediate and did not differ significantly from the other two groups (8.13±0.45 l/kg; 0.63±0.04 l/h/kg).However, volume of distribution at steady state was significantly high in both AC (10.42±1.09 l/kg) and HSCAS group (9.45±0.48 l/kg) when comparedto control group (7.21±0.20 l/kg). Maximum plasma concentration was significantly low (0.99±0.04, 0.97±0.06, 1.38±0.04 mg/ml) and time to reachmaximum plasma concentration was significantly delayed (7.33±0.42, 6.67±0.67, 4.33±0.67 h) in AC and HSCAS group when compared to controlgroup, respectively. The relative bioavailability was significantly low in both AC and HSCAS group (74.95±10.70, 88.88±15.03%) when comparedto control group. Pharmacokinetic/pharmacodynamic integration revealed that the dose of enrofloxacin (10 mg/kg) was capable of treating onlymoderately sensitive organisms (minimum inhibitory concentration ≤0.125 mg/ml) both in the presence and absence of toxin binder and higherdosage is needed for the less sensitive organism.Conclusion: The study revealed that the administration of enrofloxacin to HSCAS and AC supplemented broilers would lead to decrease in clinicalefficacy and promote the development of antimicrobial resistance. AC was found to interact more with enrofloxacin than HSCAS as observed fromthe PK parameters. Hence, careful adjustment of dosage or withdrawal of the usage of toxin binder containing either HSCAS or AC in feed duringenrofloxacin treatment is recommended.Keywords: Enrofloxacin, Pulse dosing, Hydrated sodium calcium aluminosilicate, Activated charcoal, Interaction kinetics

    A Loss of Function Screen of Identified Genome-Wide Association Study Loci Reveals New Genes Controlling Hematopoiesis

    Get PDF
    The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits

    Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion

    Get PDF
    The c-MET receptor can be overexpressed, amplified, or mutated in solid tumours including small cell lung cancer (SCLC). In c-MET-overexpressing SCLC cell line NCI-H69, hepatocyte growth factor (HGF) dramatically induced c-MET phosphorylation at phosphoepitopes pY1230/1234/1235 (catalytic tyrosine kinase), pY1003 (juxtamembrane), and also of paxillin at pY31 (CRKL-binding site). We utilised a global proteomics phosphoantibody array approach to identify further c-MET/HGF signal transduction intermediates in SCLC. Strong HGF induction of specific phosphorylation sites in phosphoproteins involved in c-MET/HGF signal transduction was detected, namely adducin-α [S724], adducin-γ [S662], CREB [S133], ERK1 [T185/Y187], ERK1/2 [T202/Y204], ERK2 [T185/Y187], MAPKK (MEK) 1/2 [S221/S225], MAPKK (MEK) 3/6 [S189/S207], RB [S612], RB1 [S780], JNK [T183/Y185], STAT3 [S727], focal adhesion kinase (FAK) [Y576/S722/S910], p38α-MAPK [T180/Y182], and AKT1[S473] and [T308]. Conversely, inhibition of phosphorylation by HGF in protein kinase C (PKC), protein kinase R (PKR), and also CDK1 was identified. Phosphoantibody-based immunohistochemical analysis of SCLC tumour tissue and microarray established the role of c-MET in SCLC biology. This supports a role of c-MET activation in tumour invasive front in the tumour progression and invasion involving FAK and AKT downstream. The c-MET serves as an attractive therapeutic target in SCLC, as shown through small interfering RNA (siRNA) and selective prototype c-MET inhibitor SU11274, inhibiting the phosphorylation of c-MET itself and its downstream molecules such as AKT, S6 kinase, and ERK1/2. Investigation of mechanisms of invasion and, ultimately, metastasis in SCLC would be very useful with these signal transduction molecules

    Employing machine learning for reliable miRNA target identification in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them. While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system has witnessed limited development. Most of them have been centered around exact complementarity match. Very few of them considered other factors like multiple target sites and role of flanking regions.</p> <p>Result</p> <p>In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA target identification, utilizing position specific dinucleotide density variation information around the target sites, to yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from species like <it>Arabidopsis</it>, <it>Medicago</it>, Rice and Tomato, and detected them accurately, suggesting gross usability of p-TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome, supported by expression and degradome based data. miR156 was found as an important component of the Rice regulatory system, where control of genes associated with growth and transcription looked predominant. The entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop computer in concurrent mode. It also provides a facility to gather experimental support for predictions made, through on the spot expression data analysis, in its web-server version.</p> <p>Conclusion</p> <p>A machine learning multivariate feature tool has been implemented in parallel and locally installable form, for plant miRNA target identification. The performance was assessed and compared through comprehensive testing and benchmarking, suggesting a reliable performance and gross usability for transcriptome wide plant miRNA target identification.</p

    Perifosine as a Potential Novel Anti-Cancer Agent Inhibits EGFR/MET-AKT Axis in Malignant Pleural Mesothelioma

    Get PDF
    PI3K/AKT signalling pathway is aberrantly active and plays a critical role for cell cycle progression of human malignant pleural mesothelioma (MMe) cells. AKT is one of the important cellular targets of perifosine, a novel bio-available alkylphospholipid that has displayed significant anti-proliferative activity in vitro and in vivo in several human tumour model systems and is currently being tested in clinical trials.We tested Perifosine activity on human mesothelial cells and different mesothelioma cell lines, in order to provide evidence of its efficacy as single agent and combined therapy.We demonstrate here that perifosine, currently being evaluated as an anti-cancer agent in phase 1 and 2 clinical trials, caused a dose-dependent reduction of AKT activation, at concentrations causing MMe cell growth arrest. In this study we firstly describe that MMe cells express aside from AKT1 also AKT3 and that either the myristoylated, constitutively active, forms of the two proteins, abrogated perifosine-mediated cell growth inhibition. Moreover, we describe here a novel mechanism of perifosine that interferes, upstream of AKT, affecting EGFR and MET phosphorylation. Finally, we demonstrate a significant increase in cell toxicity when MMe cells were treated with perifosine in combination with cisplatin.This study provides a novel mechanism of action of perifosine, directly inhibiting EGFR/MET-AKT1/3 axis, providing a rationale for a novel translational approach to the treatment of MMe

    Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks

    Get PDF
    MicroRNAs (miRNAs) are key regulators of gene expression in development and stress responses in most eukaryotes. We globally profiled plant miRNAs in response to infection of bacterial pathogen Pseudomonas syringae pv. tomato (Pst). We sequenced 13 small-RNA libraries constructed from Arabidopsis at 6 and 14 h post infection of non-pathogenic, virulent and avirulent strains of Pst. We identified 15, 27 and 20 miRNA families being differentially expressed upon Pst DC3000 hrcC, Pst DC3000 EV and Pst DC3000 avrRpt2 infections, respectively. In particular, a group of bacteria-regulated miRNAs targets protein-coding genes that are involved in plant hormone biosynthesis and signaling pathways, including those in auxin, abscisic acid, and jasmonic acid pathways. Our results suggest important roles of miRNAs in plant defense signaling by regulating and fine-tuning multiple plant hormone pathways. In addition, we compared the results from sequencing-based profiling of a small set of miRNAs with the results from small RNA Northern blot and that from miRNA quantitative RT-PCR. Our results showed that although the deep-sequencing profiling results are highly reproducible across technical and biological replicates, the results from deep sequencing may not always be consistent with the results from Northern blot or miRNA quantitative RT-PCR. We discussed the procedural differences between these techniques that may cause the inconsistency

    Cross-Mapping Events in miRNAs Reveal Potential miRNA-Mimics and Evolutionary Implications

    Get PDF
    MicroRNAs (miRNAs) have important roles in various biological processes. miRNA cross-mapping is a prevalent phenomenon where miRNA sequence originating from one genomic region is mapped to another location. To have a better understanding of this phenomenon in the human genome, we performed a detailed analysis in this paper using public miRNA high-throughput sequencing data and all known human miRNAs. We observed widespread cross-mapping events between miRNA precursors (pre-miRNAs), other non-coding RNAs (ncRNAs) and the opposite strands of pre-miRNAs by analyzing the high-throughput sequencing data. Computational analysis on all known human miRNAs also confirmed that many of them could be involved in cross-mapping events. The processing or decay of both ncRNAs and pre-miRNA opposite strand transcripts may contribute to miRNA enrichment, although some might be miRNA-mimics due to miRNA mis-annotation. Comparing to canonical miRNAs, miRNAs involved in cross-mapping events between pre-miRNAs and other ncRNAs normally had shorter lengths (17–19 nt), lower prediction scores and were classified as pseudo miRNA precursors. Notably, 4.9% of all human miRNAs could be accurately mapped to the opposite strands of pre-miRNAs, which showed that both strands of the same genomic region had the potential to produce mature miRNAs and simultaneously implied some potential miRNA precursors. We proposed that the cross-mapping events are more complex than we previously thought. Sequence similarity between other ncRNAs and pre-miRNAs and the specific stem-loop structures of pre-miRNAs may provide evolutionary implications

    Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinus similis (LsAA9A) and Collariella virescens (CvAA9A). LsAA9A and CvAA9A cleave a range of polysaccharides, including cellulose, xyloglucan, mixed-linkage glucan and glucomannan. LsAA9A additionally cleaves isolated xylan substrates. The structures of CvAA9A and of LsAA9A bound to cellulosic and non-cellulosic oligosaccharides provide insight into the molecular determinants of their specificity. Spectroscopic measurements reveal differences in copper co-ordination upon the binding of xylan and glucans. LsAA9A activity is less sensitive to the reducing agent potential when cleaving xylan, suggesting that distinct catalytic mechanisms exist for xylan and glucan cleavage. Overall, these data show that AA9 LPMOs can display different apparent substrate specificities dependent upon both productive protein–carbohydrate interactions across a binding surface and also electronic considerations at the copper active site

    Profile of MicroRNAs following Rat Sciatic Nerve Injury by Deep Sequencing: Implication for Mechanisms of Nerve Regeneration

    Get PDF
    Unlike the central nervous system, peripheral nerves can regenerate when damaged. MicroRNA (miRNA) is a novel class of small, non-coding RNA that regulates gene expression at the post-transcriptional level. Here, we report regular alterations of miRNA expression following rat sciatic nerve injury using deep sequencing. We harvested dorsal root ganglia tissues and the proximal stumps of the nerve, and identified 201 and 225 known miRNAs with significant expression variance at five time points in these tissues after sciatic nerve transaction, respectively. Subsequently, hierarchical clustering, miRNA expression pattern and co-expression network were performed. We screened out specific miRNAs and further obtained the intersection genes through target analysis software (Targetscan and miRanda). Moreover, GO and KEGG enrichment analyses of these intersection genes were performed. The bioinformatics analysis indicated that the potential targets for these miRNAs were involved in nerve regeneration, including neurogenesis, neuron differentiation, vesicle-mediated transport, homophilic cell adhesion and negative regulation of programmed cell death that were known to play important roles in regulating nerve repair. Finally, we combined differentially expressed mRNA with the predicted targets for selecting inverse miRNA-target pairs. Our results show that the abnormal expression of miRNA may contribute to illustrate the molecular mechanisms of nerve regeneration and that miRNAs are potential targets for therapeutic interventions and may enhance intrinsic regenerative ability

    Activating mutation in MET oncogene in familial colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In developed countries, the lifetime risk of developing colorectal cancer (CRC) is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The <it>MET </it>proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility.</p> <p>Methods</p> <p><it>MET </it>exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies). Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C <b>></b>T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors.</p> <p>Results</p> <p>Here we report a germline non-synonymous change in the <it>MET </it>proto-oncogene at amino acid position T992I (also reported as <it>MET </it>p.T1010I) in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in <1% in the general population. The threonine at amino acid position 992 lies in the tyrosine kinase domain of MET and a change to isoleucine at this position has been shown to promote metastatic behavior in cell-based models. The average age of CRC diagnosis in patients in this study is 63 years in mutation carriers, which is 8 years earlier than the general population average for CRC.</p> <p>Conclusions</p> <p>Although the <it>MET </it>p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this <it>MET </it>genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will be an important extension of this work to define the clinical significance.</p
    corecore