265 research outputs found

    Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution

    Full text link
    Textures in images can often be well modeled using self-similar processes while they may at the same time display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It will first be shown that accurate joint estimates of the anisotropy and selfsimilarity parameters are performed by replacing the standard 2D-discrete wavelet transform by the hyperbolic wavelet transform, which permits the use of different dilation factors along the horizontal and vertical axis. Defining anisotropy requires a reference direction that needs not a priori match the horizontal and vertical axes according to which the images are digitized, this discrepancy defines a rotation angle. Second, we show that this rotation angle can be jointly estimated. Third, a non parametric bootstrap based procedure is described, that provides confidence interval in addition to the estimates themselves and enables to construct an isotropy test procedure, that can be applied to a single texture image. Fourth, the robustness and versatility of the proposed analysis is illustrated by being applied to a large variety of different isotropic and anisotropic self-similar fields. As an illustration, we show that a true anisotropy built-in self-similarity can be disentangled from an isotropic self-similarity to which an anisotropic trend has been superimposed

    Wavelets techniques for pointwise anti-Holderian irregularity

    Full text link
    In this paper, we introduce a notion of weak pointwise Holder regularity, starting from the de nition of the pointwise anti-Holder irregularity. Using this concept, a weak spectrum of singularities can be de ned as for the usual pointwise Holder regularity. We build a class of wavelet series satisfying the multifractal formalism and thus show the optimality of the upper bound. We also show that the weak spectrum of singularities is disconnected from the casual one (denoted here strong spectrum of singularities) by exhibiting a multifractal function made of Davenport series whose weak spectrum di ers from the strong one

    Generalization of the interaction between the Haar approximation and polynomial operators to higher order methods

    No full text
    International audienceIn applications it is useful to compute the local average of a function f(u) of an input u from empirical statistics on u. A very simple relation exists when the local averages are given by a Haar approximation. The question is to know if it holds for higher order approximation methods. To do so, it is necessary to use approximate product operators defined over linear approximation spaces. These products are characterized by a Strang and Fix like condition. An explicit construction of these product operators is exhibited for piecewise polynomial functions, using Hermite interpolation. The averaging relation which holds for the Haar approximation is then recovered when the product is defined by a two point Hermite interpolation

    Ultrasonic characterization and multiscale analysis for the evaluation of dental implant stability: a sensitivity study Biomedical Signal Processing and Control 42 (2018) 37-44

    Get PDF
    International audienceWith the aim of surgical success, the evaluation of dental implant long-term stability is an important task for dentists. About that, the complexity of the newly formed bone and the complex boundary conditions at the bone-implant interface induce the main difficulties. In this context, for the quantitative evaluation of primary and secondary stabilities of dental implants, ultrasound based techniques have already been proven to be effective. The microstructure, the mechanical properties and the geometry of the bone-implant system affect the ultrasonic response. The aim of this work is to extract relevant information about primary stability from the complex ultrasonic signal obtained from a probe screwed to the implant. To do this, signal processing based on multiscale analysis has been used. The comparison between experimental and numerical results has been carried out, and a correlation has been observed between the multifractal signature and the stability. Furthermore, a sensitivity study has shown that the variation of certain parameters (i.e. central frequency and trabecular bone density) does not lead to a change in the response

    Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation

    Full text link
    In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother wavelets family. In this work we present the inversion formula and Parsval theorem for CCWT by virtue of the entangled state representation, which makes the CCWT theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.Comment: 4 pages no figur

    A general wavelet-based profile decomposition in the critical embedding of function spaces

    Get PDF
    We characterize the lack of compactness in the critical embedding of functions spaces XYX\subset Y having similar scaling properties in the following terms : a sequence (un)n0(u_n)_{n\geq 0} bounded in XX has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0(\phi_l)_{l>0} such that the remainder converges to zero in YY as the number of functions in the sum and nn tend to ++\infty. Such a decomposition was established by G\'erard for the embedding of the homogeneous Sobolev space X=H˙sX=\dot H^s into the Y=LpY=L^p in dd dimensions with 0<s=d/2d/p0<s=d/2-d/p, and then generalized by Jaffard to the case where XX is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular we identify two generic properties on the spaces XX and YY that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of XX and YY satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, H\"older and BMO spaces.Comment: 24 page

    Evolutionary signal enhancement based on Hölder regularity analysis

    Get PDF
    International audienceWe present an approach for signal enhancement based on the analysis of the local Hölder regularity. The method does not make explicit assumptions on the type of noise or on the global smoothness of the original data, but rather supposes that signal enhancement is equivalent to increasing the Hölder regularity at each point

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations

    Get PDF
    A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)
    corecore