102 research outputs found

    Integration of information systems on the basis of electronic government

    Get PDF
    On the basis of E-government conception by integrating the information systems belonging separate state and business organizations, new information services can be established. For instance,"Customs / Domestic production -Trading network - Tax" integration information system. Interested sides (State agencies, business structures and citizens) can be provided by necessary information. Джафаров Д. M.Интеграция информационных систем на основе электронного правительства.На основании концепции электронного правительства, интегрируя системы, принадлежащие различным государственным и коммерческим организациям, могут быть представлены новые информационные услуги. Например, "Таможня / Внутреннее производство - Торговая сеть - Налоговая". Заинтересованные стороны (Государственные органы, коммерческие структуры и граждане) могут быть обеспечены необходимой информацией

    A finite oscillator model related to sl(2|1)

    Get PDF
    We investigate a new model for the finite one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momentum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a parameter p (0<p<1) and an integer representation label j. In the (2j+1)-dimensional representations W_j of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of the position operator is discrete and turns out to be of the form ±k\pm\sqrt{k}, where k=0,1,...,j. We construct the discrete position wave functions, which are given in terms of certain Krawtchouk polynomials. These wave functions have appealing properties, as can already be seen from their plots. The model is sufficiently simple, in the sense that the corresponding discrete Fourier transform (relating position wave functions to momentum wave functions) can be constructed explicitly

    The su(2)\mathfrak{su}(2) Krawtchouk oscillator model under the CP{\cal C}{\cal P} deformed symmetry

    Get PDF
    We define a new algebra, which can formally be considered as a CP{\cal C}{\cal P} deformed su(2)\mathfrak{su}(2) Lie algebra. Then, we present a one-dimensional quantum oscillator model, of which the wavefunctions of even and odd states are expressed by Krawtchouk polynomials with fixed p=1/2p=1/2, K2n(k;1/2,2j)K_{2n}(k;1/2,2j) and K2n(k1;1/2,2j2)K_{2n}(k-1;1/2,2j-2). The dynamical symmetry of the model is the newly introduced su(2)CP\mathfrak{su}(2)_{{\cal C}{\cal P}} algebra. The model itself gives rise to a finite and discrete spectrum for all physical operators (such as position and momentum). Among the set of finite oscillator models it is unique in the sense that any specific limit reducing it to a known oscillator models does not exist.Comment: Contribution to the 30th International Colloquium on Group Theoretical Methods in Physics (Ghent, Belgium, 2014). To be published in Journal of Physics: Conference Serie

    The Wigner function of a q-deformed harmonic oscillator model

    Full text link
    The phase space representation for a q-deformed model of the quantum harmonic oscillator is constructed. We have found explicit expressions for both the Wigner and Husimi distribution functions for the stationary states of the qq-oscillator model under consideration. The Wigner function is expressed as a basic hypergeometric series, related to the Al-Salam-Chihara polynomials. It is shown that, in the limit case h0h \to 0 (q1q \to 1), both the Wigner and Husimi distribution functions reduce correctly to their well-known non-relativistic analogues. Surprisingly, examination of both distribution functions in the q-deformed model shows that, when q1q \ll 1, their behaviour in the phase space is similar to the ground state of the ordinary quantum oscillator, but with a displacement towards negative values of the momentum. We have also computed the mean values of the position and momentum using the Wigner function. Unlike the ordinary case, the mean value of the momentum is not zero and it depends on qq and nn. The ground-state like behaviour of the distribution functions for excited states in the q-deformed model opens quite new perspectives for further experimental measurements of quantum systems in the phase space.Comment: 16 pages, 24 EPS figures, uses IOP style LaTeX, some misprints are correctd and journal-reference is adde

    The oscillator model for the Lie superalgebra sh(2|2) and Charlier polynomials

    Get PDF
    We investigate an algebraic model for the quantum oscillator based upon the Lie superalgebra sh(2|2), known as the Heisenberg-Weyl superalgebra or "the algebra of supersymmetric quantum mechanics", and its Fock representation. The model offers some freedom in the choice of a position and a momentum operator, leading to a free model parameter gamma. Using the technique of Jacobi matrices, we determine the spectrum of the position operator, and show that its wavefunctions are related to Charlier polynomials C_n with parameter gamma^2. Some properties of these wavefunctions are discussed, as well as some other properties of the current oscillator model.Comment: Minor changes and some additional references added in version

    Discrete series representations for sl(2|1), Meixner polynomials and oscillator models

    Get PDF
    We explore a model for the one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). For this purpose, a class of discrete series representations of sl(2|1) is constructed, each representation characterized by a real number beta>0. In this model, the position and momentum operators of the oscillator are odd elements of sl(2|1) and their expressions involve an arbitrary parameter gamma. In each representation, the spectrum of the Hamiltonian is the same as that of the canonical oscillator. The spectrum of the momentum operator can be continuous or infinite discrete, depending on the value of gamma. We determine the position wavefunctions both in the continuous and discrete case, and discuss their properties. In the discrete case, these wavefunctions are given in terms of Meixner polynomials. From the embedding osp(1|2)\subset sl(2|1), it can be seen why the case gamma=1 corresponds to the paraboson oscillator. Consequently, taking the values (beta,gamma)=(1/2,1) in the sl(2|1) model yields the canonical oscillator.Comment: (some minor misprints were corrected in this version

    Exact solution of the position-dependent effective mass and angular frequency Schr\"odinger equation: harmonic oscillator model with quantized confinement parameter

    Full text link
    We present an exact solution of a confined model of the non-relativistic quantum harmonic oscillator, where the effective mass and the angular frequency are dependent on the position. The free Hamiltonian of the proposed model has the form of the BenDaniel--Duke kinetic energy operator. The position-dependency of the mass and the angular frequency is such that the homogeneous nature of the harmonic oscillator force constant kk and hence the regular harmonic oscillator potential is preserved. As a consequence thereof, a quantization of the confinement parameter is observed. It is shown that the discrete energy spectrum of the confined harmonic oscillator with position-dependent mass and angular frequency is finite, has a non-equidistant form and depends on the confinement parameter. The wave functions of the stationary states of the confined oscillator with position-dependent mass and angular frequency are expressed in terms of the associated Legendre or Gegenbauer polynomials. In the limit where the confinement parameter tends to \infty, both the energy spectrum and the wave functions converge to the well-known equidistant energy spectrum and the wave functions of the stationary non-relativistic harmonic oscillator expressed in terms of Hermite polynomials. The position-dependent effective mass and angular frequency also become constant under this limit

    Coherent States and a Path Integral for the Relativistic Linear Singular Oscillator

    Full text link
    The SU(1,1) coherent states for a relativistic model of the linear singular oscillator are considered. The corresponding partition function is evaluated. The path integral for the transition amplitude between SU(1,1) coherent states is given. Classical equations of the motion in the generalized curved phase space are obtained. It is shown that the use of quasiclassical Bohr-Sommerfeld quantization rule yields the exact expression for the energy spectrum.Comment: 14 pages, 2 figures, Uses RevTeX4 styl

    The Wigner distribution function for the one-dimensional parabose oscillator

    Full text link
    In the beginning of the 1950's, Wigner introduced a fundamental deformation from the canonical quantum mechanical harmonic oscillator, which is nowadays sometimes called a Wigner quantum oscillator or a parabose oscillator. Also, in quantum mechanics the so-called Wigner distribution is considered to be the closest quantum analogue of the classical probability distribution over the phase space. In this article, we consider which definition for such distribution function could be used in the case of non-canonical quantum mechanics. We then explicitly compute two different expressions for this distribution function for the case of the parabose oscillator. Both expressions turn out to be multiple sums involving (generalized) Laguerre polynomials. Plots then show that the Wigner distribution function for the ground state of the parabose oscillator is similar in behaviour to the Wigner distribution function of the first excited state of the canonical quantum oscillator.Comment: 20 pages, 2 EPS figures, published in Journal of Physics

    A relativistic model of the NN-dimensional singular oscillator

    Full text link
    Exactly solvable NN-dimensional model of the quantum isotropic singular oscillator in the relativistic configurational rN\vec r_N-space is proposed. It is shown that through the simple substitutions the finite-difference equation for the NN-dimensional singular oscillator can be reduced to the similar finite-difference equation for the relativistic isotropic three-dimensional singular oscillator. We have found the radial wavefunctions and energy spectrum of the problem and constructed a dynamical symmetry algebra.Comment: 8 pages, accepted for publication in J. Phys.
    corecore