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Abstract. We define a new algebra, which can formally be considered as a CP deformed
su(2) Lie algebra. Then, we present a one-dimensional quantum oscillator model, of which
the wavefunctions of even and odd states are expressed by Krawtchouk polynomials with fixed
p = 1/2, K2n(k; 1/2, 2j) and K2n(k − 1; 1/2, 2j − 2). The dynamical symmetry of the model
is the newly introduced su(2)CP algebra. The model itself gives rise to a finite and discrete
spectrum for all physical operators (such as position and momentum). Among the set of finite
oscillator models it is unique in the sense that any specific limit reducing it to a known oscillator
models does not exist.

1. Introduction
Krawtchouk polynomials are the simplest finite-discrete polynomials of the Askey scheme of
orthogonal polynomials. They play an essential role in the study of problems coming from
different branches of modern science. Image analysis based on their moments [1], exactly solvable
birth and death processes [2], perfect qubit transfer in a spin chain with nearest-neighbour
interaction [3] are only a few of such problems solved by employing Krawtchouk polynomials.
Also in the “discretisation” of the quantum-mechanical formulation of the harmonic oscillator
problem they play an important role. The non-relativistic explicit formulation of this problem
in the infinite continuous configuration space is well known within the canonical approach. The
wavefunctions of stationary states are expressed in terms of the Hermite polynomials both in
momentum and position representation [4]. Under the assumption that the quantum world
is quite different from the classical one, various approaches and methods allow to construct a
number of exactly solvable mathematical models of the quantum harmonic oscillator, where
the wavefunctions are expressed in terms of other known orthogonal polynomials. Also the
Krawtchouk polynomials allow one to construct a number of interesting quantum harmonic
oscillator models in finite-discrete configuration space. At present, the known models using
Krawtchouk polynomials are the su(2) model [5–7] and the sl(2|1) model [8] for the finite
quantum harmonic oscillator. In the case of su(2) dynamical symmetry, the wavefunctions of the
model are defined through the special case of Krawtchouk polynomials with a fixed parameter
p = 1/2. For the ‘supersymmetric’ model with sl(2|1) dynamical symmetry, the wavefunctions
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are expressed by means of general Krawtchouk polynomials with parameter 0 < p < 1. In
the present work, we present a new oscillator model with wavefunctions of even and odd states
also expressed by Krawtchouk polynomials with fixed p = 1/2, but in a very different way:
the polynomials that appear are K2n(k; 1/2, 2j) and K2n(k − 1; 1/2, 2j − 2) respectively. The
dynamical symmetry is formally called a CP deformation of the su(2) Lie algebra.

The current paper is structured as follows; in section 2, the CP deformation of the su(2) Lie
algebra and its representations are introduced. Then, this algebra is used for the construction of
a model of the finite-discrete quantum harmonic oscillator. In section 4, we discuss explicit
expression of the wavefunctions of the constructed model both in momentum and position
representations. Finally, section 5 covers a brief summary and discussion of the obtained results.

2. The algebra su(2) under the CP deformed symmetry
Our starting point is the definition of the formal algebra su(2) under the CP deformed symmetry
by its basis elements J0, J+ and J−.

Definition 1 The algebra su(2)CP is a unital algebra with basis elements J0, J+, J−, C and P
subject to the following relations:

• The operator C commutes with all basis elements.

• P is a parity operator satisfying P2 = 1 and

[P, J0] = PJ0 − J0P = 0, {P, J±} = PJ± + J±P = 0. (1)

• The su(2) commutation relations are CP deformed as follows:

[J0, J±] = ±J±, (2)

[J+, J−] = 2J0 (CP − 1) . (3)

The next step is to describe representations of this algebra, by defining the actions of the
basis elements J0, J+ and J− in such a way that they are compatible with the commutation
relations (2) and (3). It is easy to verify that an action exists on the usual standard basis vectors
|j,m〉 (with j being an integer and m = −j,−j+1, . . . ,+j), which is reminiscent of but different
from the common su(2) algebra action. This is given by:

J0|j,m〉 = m |j,m〉, (4)

J+|j,m〉 =
{

√

(j −m)(j −m− 1) |j,m+ 1〉, if j +m is even;
√

(j +m)(j +m+ 1) |j,m+ 1〉, if j +m is odd,
(5)

J−|j,m〉 =
{

√

(j +m)(j +m− 1) |j,m− 1〉, if j +m is even;
√

(j −m)(j −m+ 1) |j,m− 1〉, if j +m is odd.
(6)

Note that j must be integer (and not half-integer) in order to be a representation (one way to
see it is that one should still have J+|j, j〉 = 0 and J−|j,−j〉 = 0). The algebra representation
is completed by the action of the extra operators C and P:

C|j,m〉 = 2j |j,m〉, (7)

P|j,m〉 = (−1)j+m |j,m〉. (8)

Despite the fact that this algebra is at first sight very close to su(2), its behaviour is quite
different. For example, the representations matrices of J0, J± in the su(2)CP algebra never
coincide with the representation matrices of these elements in the su(2) algebra, except for the
trivial representation j = 0. Note also that there is no “deformation parameter” that takes the
su(2)CP algebra to the su(2) algebra for some limit.



3. A one-dimensional oscillator model based on the algebra su(2)CP
We now consider an oscillator model based on the algebra introduced, and choose the
Hamiltonian, position and momentum operators in a way that is similar to the non-deformed
su(2) one-dimensional oscillator case [6, 7], i.e.

Ĥ = J0 + j +
1

2
, q̂ =

1

2
(J+ + J−), p̂ =

i

2
(J+ − J−). (9)

One can easily check that these three operators satisfy the Heisenberg equations:

[

Ĥ, q̂
]

= −ip̂,
[

Ĥ, p̂
]

= iq̂. (10)

Then, one can also observe that

Ĥ|j,m〉 = (m+ j +
1

2
)|j,m〉. (11)

So the spectrum of Ĥ is equidistant but finite:

n+
1

2
(n = 0, 1, . . . , 2j). (12)

From the actions (5) and (6) one obtains for the position operator q̂ that

2q̂ |j,m〉 =
√

(j +m) (j +m− 1) |j,m− 1〉+
√

(j −m) (j −m− 1) |j,m+ 1〉 , (13)

when j +m = 2n is even, and

2q̂ |j,m〉 =
√

(j −m) (j −m+ 1) |j,m− 1〉+
√

(j +m) (j +m+ 1) |j,m+ 1〉 , (14)

when j+m = 2n+1 is odd. One can do the same computations for the operator 2ip̂. In matrix
form, both position and momentum operators 2q̂ and 2ip̂ take the following form:

2q̂ =















0 M0 0 · · · 0
M0 0 M1 · · · 0

0 M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 M2j−1 0















≡ M q, (15)

and

2ip̂ =















0 M0 0 · · · 0
−M0 0 M1 · · · 0

0 −M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 −M2j−1 0















≡ Mp, (16)

with matrix elements

Mk =

{

√

k (k + 1), if k is odd;
√

(2j − k) (2j − k − 1), if k is even.
(17)

The purpose is now to study the eigenvalues of the position (and momentum) operator in this
model. In other words: we need to find eigenvalues and eigenvectors of these matrices M q and



Mp. It turns out that these eigenvectors can be constructed in terms of symmetric Krawtchouk
polynomials. In general, Krawtchouk polynomials Kn (x; p,N) of degree n (n = 0, 1, . . . , N)
in the variable x, with parameter 0 < p < 1, are defined in terms of the 2F1 hypergeometric
function of argument 1

p as follows [9]:

Kn (x; p,N) = 2F1

(−n,−x

−N
;
1

p

)

. (18)

Their orthogonality holds for discrete values of x, and is given by:

N
∑

x=0

w (x,N)Kn (x; p,N)Kn′ (x; p,N) = h (n,N) δn,n′ , (19)

where,

w (x,N) =

(

N

x

)

px(1− p)x (x = 0, 1, . . . , N), (20)

h (n,N) =
(−1)n n!

(−N)n

(

1− p

p

)n

. (21)

Here, (a)k = a(a+ 1) · · · (a+ k − 1) are Pochhammer symbols. We can introduce the following
orthonormal Krawtchouk functions:

K̃n (x; p,N) =

√

w (x,N)

h (n,N)
Kn (x; p,N) . (22)

Let us also mention that for p = 1/2, the corresponding Krawtchouk polynomials are called
“symmetric”, since

Kn(x;
1
2 , N) = (−1)nKn(N − x; 12 , N). (23)

In previous examples, the construction of a quantum oscillator model in term of orthogonal
polynomials is based on the differential (or difference) equation, the solution of which is
expressed in terms of that polynomial. In this sense, the su(2) one-dimensional Krawtchouk
oscillator model [6, 7] is based on the difference equation for Krawtchouk polynomials [9,
(9.11.5)], whereas the sl(2|1) one-dimensional Krawtchouk oscillator model [8] is based on
the forward and backward shift operator equations for them [9, (9.11.6), (9.11.8)]. For our
current construction, the essential point here is a set of new difference equations for symmetric
Krawtchouk polynomials (p = 1

2). These new relations involve a pair of symmetric Krawtchouk
polynomials shifted in variables 2x or 2(x+ 1) and parameters 2(j − 1) and 2j.

Proposition 2 The symmetric Krawtchouk polynomials satisfy the following difference
equations:

j (2j − 1)Kj+n

(

2 (x+ 1) ; 12 , 2j
)

= − (x+ 1) (2x+ 1)Kj+n−1

(

2x; 12 , 2 (j − 1)
)

+ (j − x− 1) (2j − 2x− 3)Kj+n−1

(

2 (x+ 1) ; 12 , 2 (j − 1)
)

; (24)

2 (j + n) (j − n)Kj+n−1

(

2x; 12 , 2 (j − 1)
)

= j (2j − 1)Kj+n

(

2x; 12 , 2j
)

− j (2j − 1)Kj+n

(

2 (x+ 1) ; 12 , 2j
)

. (25)

In these equations, the integer n is arbitrary but should be taken appropriately (e.g. for the first
Krawtchouk polynomial, the degree j + n should belong to {0, 1, . . . , 2j}).



Proof. The validity of both equations is related to a higher level hypergeometric series than

2F1, namely 3F2. For this purpose, we can use the following relation [10, (39)]:

2F1

(−2x,−j − n

−2j
; 2

)

= (−1)x
(

j
x

)

(

2j
2x

) 3F2

(−n, n,−x

1/2,−j
; 1

)

. (26)

Using this equation for the 2F1 expressions in (24) leads to the following identity to verify:

j 3F2

(−n, n,−x− 1

1/2,−j
; 1

)

= (x+ 1) 3F2

( −n, n,−x

1/2,−j + 1
; 1

)

− (x− j + 1) 3F2

(−n, n,−x− 1

1/2,−j + 1
; 1

)

. (27)

Now, to prove the correctness of (27) it is sufficient to simplify the Pochhammer symbols in
the expansion of the 3F2’s in the right hand side, collect terms, and the left hand side appears
automatically.

The proof of (25) is similar. In this case, using (26) leads to the following identity:

j2 − n2

j
3F2

( −n, n,−x

1/2,−j + 1
; 1

)

= (x+
1

2
) 3F2

(−n, n,−x− 1

1/2,−j
; 1

)

− (x− j +
1

2
) 3F2

(−n, n,−x

1/2,−j
; 1

)

. (28)

The verification of this again depends on elementary manipulations of Pochhammer symbols. ✷
Now, our aim is to construct eigenvalues and eigenvectors ofM q (15). This is rather technical,

but is essentially based on (24) and (25). For this purpose, we construct the matrix U in the
following proposition.

Proposition 3 Let M q ≡ 2q̂ be the tridiagonal (2j + 1) × (2j + 1)-matrix (15) and let
U = (Ukl)0≤k,l≤2j be the (2j + 1) × (2j + 1)-matrix with matrix elements as follows. For an
even row index 2i (i = 0, 1, . . . , j), let

U2i,j−k = U2i,j+k = (−1)i2k−jK̃2i(k;
1
2 , 2j), k ∈ {1, . . . , j − 1}; (29)

U2i,0 = U2i,2j = (−1)i2−1/2K̃2i(j;
1
2 , 2j);

U2i,j = (−1)i2−j+1/2K̃2i(0;
1
2 , 2j).

For an odd row index 2i+ 1 (i = 0, 1, . . . , j − 1), let

U2i+1,j−k = −U2i+1,j+k = (−1)i+12k−jK̃2i(k − 1; 12 , 2j − 2), k ∈ {1, . . . , j − 1} (30)

U2i+1,0 = −U2i+1,2j = (−1)i+12−1/2K̃2i(j − 1; 12 , 2j − 2);

U2i+1,j = 0.

Then U is an orthogonal matrix:
UUT = UTU = I. (31)

Furthermore, the columns of U are the eigenvectors of M q, i.e.

M qU = UDq, (32)

where Dq = diag(ǫ0, ǫ1, . . . , ǫ2j) is a diagonal matrix containing the eigenvalues ǫk of M q:

ǫk = −2
√

(j − k)(j + k), ǫj = 0, ǫ2j−k = 2
√

(j − k)(j + k), (k = 0, . . . , j − 1). (33)



Proof. The proof of this proposition is quite similar to [10, Proposition 3]. The matrix
relations (32) follow directly from the two difference equations (24) and (25). The orthogonality
of the matrix U is slightly tricky, and does not follow (as one would expect) directly from
the orthogonality of symmetric Krawtchouk polynomials. Instead, just as in the proof of
Proposition 2 we need to go to higher level hypergeometric series. Reexpressing the 2F1’s in
terms of 3F2’s by means of (26), the corresponding 3F2’s can be related to Hahn polynomials [9]
with parameters α = β = −1/2. The orthogonality of these Hahn polynomials leads to:

N
∑

x=0

1

22N−1

(

2N

n

)(

2N

2x

)

Kn(2x;
1
2 , 2N)Kn′(2x; 12 , 2N) =

{

δn,n′ , if n 6= N,

2δn,n′ , if n = N,
(34)

for n, n′ ∈ {0, 1, . . . , N}. The extra factor 2 for n = n′ = N appears because for that case one
has to take a limit of the squared norm of the Hahn polynomial, so one gets another factor than
in the other cases where one can just substitute α = β = −1/2. Equation (34) is the underlying
equation proving the orthogonality of the columns of U . The extra factor 2 is also responsible
for the extra factors 21/2 when k = j. ✷

This proposition gives us essentially the eigenvalues q of the position operator q̂. There are
2j + 1 distinct eigenvalues and they are given by:

−j,−
√

j2 − 1, . . .−
√

j2 − (j − 1)2, 0,

√

j2 − (j − 1)2, . . . ,
√

j2 − 1, j, (35)

or in general:
q±(j−k) = ±

√

(j − k) (j + k), k = 0, 1, 2, . . . , j. (36)

In Figure 1, we present a plot of the spectrum of the position operator for the su(2), sl(2|1)
and su(2)CP oscillator models. One observes that the spectrum of the position operator is quite
different compared to the finite-discrete oscillator models already known. The main difference
is the distribution of positions. For the su(2) oscillator model, the positions are equidistant

(q
su(2)
±k = ±k). The distribution of positions for the sl(2|1) model is not equidistant, due to

q
sl(2|1)
±k = ±

√
k. In that case, the interval covering the positions is smaller than the corresponding

one for the su(2) case. Comparing the su(2)CP case with two others, we observe that some of
its properties overlap with su(2) and others with sl(2|1). The interval covering the positions is

the same for the su(2) and the su(2)CP model: q
su(2)
±j = q

su(2)CP
±j . Both the sl(2|1) and su(2)CP

oscillator models have a non-equidistant distribution of the position eigenvalues. The main
feature of the su(2)CP oscillator model is that the position values are concentrated near the
border of the inteval [−j,+j], whereas near the middle of the interval the distribution is sparse.

4. Position and momentum wavefunctions
The position wavefunctions of the su(2)CP finite-discrete oscillator model are defined in a
similar way as in [10]. Their explicit expression is computed through the overlap between

the q̂-eigenvectors |j, qj−k) and the Ĥ-eigenvectors |j,m〉. Let us denote them by Ψj+m(q),
where m = −j,−j + 1, . . . ,+j, and where q assumes one of the discrete values of qk with
(k = −j,−j + 1, . . . ,+j). Simple computations show that

Ψj+m(qj−k) = 〈j,m|j, qj−k) = Uj+m,j+k, (37)

where Uj+m,j+k are the matrix elements of M q. Then, one can find that for the even case
j +m = 2n and positive values of position, the wavefunctions have the following expression:

Ψ2n(qk) = (−1)n2k−jK̃2n(k;
1
2 , 2j), n = 0, 1, . . . , j, k = 1, . . . , j − 1, (38)



Figure 1. Spectrum of the position operator for j = 5, (a) in the case of the su(2) model, (b) in
the case of the sl(2|1) model and (c) in the case of the su(2)CP model.

whereas, for the odd case j +m = 2n+ 1 and positive values of position, we have

Ψ2n+1(qk) = (−1)n2k−jK̃2n(k − 1; 12 , 2j − 2). (39)

One can extend these computations and obtain similar expressions for zero and negative values
of the positions.

In Figure 2 we plot the discrete wavefunctions (38) and (39) for some large j-value, and for
some n-values. Due to the unique property of the position eigenvalues to be located near the
border of the interval [−j,+j], the behaviour of the wavefunctions also reflects this peculair
distrubution.

We can define momentum wavefunctions Φj+m(p) in a similar way. Their explicit expression

is computed through the overlap between the p̂-eigenvectors |j, pj−k) and the Ĥ-eigenvectors
|j,m〉. In this case, the simple relation between Mp and M q shows that

Φj+m(pj−k) = 〈j,m|j, pj−k) = Vj+m,j+k, pj−k ≡ qj−k, Vk,l ≡ ik+1Uk,l. (40)

Then, in accordance with equations (38) and (39), one finds that for the even case j +m = 2n
and for positive values of momentum, the wavefunctions have the following expression:

Φ2n(pk) = i 2k−jK̃2n(k;
1
2 , 2j), n = 0, 1, . . . , j, k = 1, . . . , j − 1, (41)

whereas for the odd case j +m = 2n+ 1 and positive values of momentum, we have

Φ2n+1(pk) = −2k−jK̃2n(k − 1; 12 , 2j − 2). (42)

These computations can easily be extended for zero and negative values of the momentum. Both
wavefunctions Ψ(q) and Φ(p) are related by the so called CP symmetric Krawtchouk transform:

Φ (pl) =

j
∑

k=−j

KklΨ(qk), (43)

where, K = UTV . The matrix elements Kk,l can be computed by using (34).



Figure 2. Plots of the discrete wavefunctions Ψn(q) in the representation with j = 30. We plot
the wavefunctions for n = 0, 1, 2, 60.

5. Discussion
Despite the fact that the non-relativistic one-dimensional quantum oscillator in the canonical
approach has a nice explicit solution in terms of Hermite polynomials, there are still attempts
to construct new oscillator models inspired by different starting points. One of these starting
points is the assumption of discrete space, in which case one is looking for oscillator models with
a discrete position spectrum (which could be finite of infinite discrete). The most popular finite
discrete oscillator model [6,7] is based on the su(2) algebra, and uses Krawtchouk polynomials.

In current paper, we have constructed a new model for the one-dimensional oscillator, with
wavefunctions expressed in terms of the Krawtchouk polynomials with parameter p = 1/2 (the
symmetric Krawtchouk polynomials). In order to construct a solvable oscillator model, we have
first defined a new algebra, formally called the su(2) algebra under the CP deformation. The
representations of this algebra were given and are similar to representations of su(2), but the
action of the raising and lowering operators J+ and J− differs considerably. As a consequence,
when considering the oscillator model related to this algebra, the matrix representations of
position and momentum operators is also different. In the standard |j,m〉 bases, the position
operator is tridiagonal, and we have shown that its eigenvalues and eigenvectors involve
Krawtchouk polynomials. The matrix relation for the eigenvalue problem is equivalent to certain
finite difference equations for Krawtchouk polynomials.

The resulting model is unique in the sense that it does not generalize any other existing
oscillator model. Peculiar properties are the non-equidistant distribution of the position values
as well as the behaviour of the wavefunctions around zero and near the border of the maximum
and minimum eigenvalues.
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