6 research outputs found

    Resolved Multi-element Stellar Chemical Abundances in the Brightest Quiescent Galaxy at z ∼ 2

    Get PDF
    Measuring the chemical composition of galaxies is crucial to our understanding of galaxy formation and evolution models. However, such measurements are extremely challenging for quiescent galaxies at high redshifts, which have faint stellar continua and compact sizes, making it difficult to detect absorption lines and nearly impossible to spatially resolve them. Gravitational lensing offers the opportunity to study these galaxies with detailed spectroscopy that can be spatially resolved. In this work, we analyze deep spectra of MRG-M0138, a lensed quiescent galaxy at z = 1.98, which is the brightest of its kind, with an H-band magnitude of 17.1. Taking advantage of full spectral fitting, we measure [Mg/Fe] = 0.51 ± 0.05, [Fe/H] = 0.26 ± 0.04, and, for the first time, the stellar abundances of six other elements in this galaxy. We further constrained, also for the first time in a z ~ 2 galaxy, radial gradients in stellar age, [Fe/H], and [Mg/Fe]. We detect no gradient in age or [Mg/Fe] and a slightly negative gradient in [Fe/H], which has a slope comparable to that seen in local early-type galaxies. Our measurements show that not only is MRG-M0138 very Mg-enhanced compared to the centers of local massive early-type galaxies, it is also very iron rich. These dissimilar abundances suggest that even the inner regions of massive galaxies have experienced significant mixing of stars in mergers, in contrast to a purely inside-out growth model. The abundance pattern observed in MRG-M0138 challenges simple galactic chemical evolution models that vary only the star formation timescale and shows the need for more elaborate models

    Data from: Deep phylogenetic incongruence in the angiosperm clade Rosidae

    Get PDF
    Analysis of large data sets can help resolve difficult nodes in the tree of life and also reveal complex evolutionary histories. The placement of the Celastrales-Oxalidales-Malpighiales (COM) clade within Rosidae remains one of the most confounding phylogenetic questions in angiosperms, with previous analyses placing it with either Fabidae or Malvidae. To elucidate the position of COM, we assembled multi-gene matrices of chloroplast, mitochondrial, and nuclear sequences, as well as large single- and multi-copy nuclear gene data sets. Analyses of multi-gene data sets demonstrate conflict between the chloroplast and both nuclear and mitochondrial data sets, and the results are robust to various character-coding and data-exclusion treatments. Analyses of single- and multi-copy nuclear loci indicate that most loci support the placement of COM with Malvidae, fewer loci support COM with Fabidae, and almost no loci support COM outside a clade of Fabidae and Malvidae. Although incomplete lineage sorting and ancient introgressive hybridization remain as plausible explanations for the conflict among loci, more complete sampling is necessary to evaluate these hypotheses fully. Our results emphasize the importance of genomic data sets for revealing deep incongruence and complex patterns of evolution

    The Art of Measuring Physical Parameters in Galaxies: A Critical Assessment of Spectral Energy Distribution Fitting Techniques

    No full text
    The study of galaxy evolution hinges on our ability to interpret multiwavelength galaxy observations in terms of their physical properties. To do this, we rely on spectral energy distribution (SED) models, which allow us to infer physical parameters from spectrophotometric data. In recent years, thanks to wide and deep multiwave band galaxy surveys, the volume of high-quality data have significantly increased. Alongside the increased data, algorithms performing SED fitting have improved, including better modeling prescriptions, newer templates, and more extensive sampling in wavelength space. We present a comprehensive analysis of different SED-fitting codes including their methods and output with the aim of measuring the uncertainties caused by the modeling assumptions. We apply 14 of the most commonly used SED-fitting codes on samples from the CANDELS photometric catalogs at z ∼ 1 and z ∼ 3. We find agreement on the stellar mass, while we observe some discrepancies in the star formation rate (SFR) and dust-attenuation results. To explore the differences and biases among the codes, we explore the impact of the various modeling assumptions as they are set in the codes (e.g., star formation histories, nebular, dust and active galactic nucleus models) on the derived stellar masses, SFRs, and A _V values. We then assess the difference among the codes on the SFR–stellar mass relation and we measure the contribution to the uncertainties by the modeling choices (i.e., the modeling uncertainties) in stellar mass (∼0.1 dex), SFR (∼0.3 dex), and dust attenuation (∼0.3 mag). Finally, we present some resources summarizing best practices in SED fitting

    Euclid. I. Overview of the Euclid mission

    No full text
    The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance

    Euclid. I. Overview of the Euclid mission

    No full text
    International audienceThe current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance
    corecore