7 research outputs found

    Aerosol, surface and cloud retrieval using passive remote sensing over the Arctic

    No full text
    The lack knowledge of aerosol optical properties is one of the sources of uncertainty in assessment and projections of the evolution of climate change and the phenomenon of Arctic Amplification. The spatial and temporal change of microphysical, chemical and optical properties of aerosols in the Arctic and the induced effects through direct and indirect radiative forcing of aerosols remain an open question. The cause of this gap in our understanding and therefore in the global aerosol optical thickness (AOT) maps is associated with the difficulty of retrieving aerosol properties over bright surfaces covered with snow and ice. Decoupling a strong surface signal from that of aerosol in the measured top-of-atmosphere reflectance is challenging and still hampered due to remaining unresolved issues in state-of-the-art algorithms. Despite the promising performance of previously-developed methods and ongoing research, there is no published long-term AOT product over polar regions (over land and ocean) to be used for climate studies. In this work, to extend our knowledge about the open issues and improve the existing algorithms, first we focus on the two major obstacles in the retrieval of AOT over snow/ice surfaces: i) cloud identification, and ii) surface properties; Second, we apply the outcome of studying the two mentioned prerequisites to improve the previously-developed aerosol retrieval algorithm called AEROSNOW and create a long-term data record for aerosol optical thickness over the Arctic circle. In the framework of this work, a new cloud identification algorithm called the AATSR/SLSTR Cloud Identification Algorithm (ASCIA) has been developed to screen cloudy scenes in observations of Advanced Along-Track Scanning Radiometer (AATSR) on-board ENVISAT as well as its successor Sea and Land Surface Temperature Radiometer (SLSTR) on-board Sentinel-3. The cloud detection results are verified by comparing them with available cloud products over the Arctic. Furthermore, the cloud product from ASCIA is validated using the ground-based measurements SYNOP, resulting in a promising agreement. In general, ASCIA shows an improved performance in comparison with other algorithms applied to AATSR measurements over snow/ice. For the study of snow surface properties, the reflectance is simulated in a snow–atmosphere system, using the SCIATRAN radiative transfer model, and the results are compared with those of airborne measurements. A sensitivity study is conducted to highlight the importance of having a priori knowledge about snow morphology (size and shape) and atmospheric parameters to minimise the difference between simulated and real world reflectance. The absolute difference between the modelled results and measurements in off-glint regions is generally small and promising. In the final step, we apply the outcome of previous steps in the AEROSNOW algorithm as far as possible within the scope of this work and retrieve AOT over the Arctic circle for the 2002-2012 period with the spatial resolution of 1 km2. The retrieved AOT is validated using ground-based measurements AErosol RObotic NETwork (AERONET). The results of validation are promising and show the successful performance of the algorithm especially during haze episodes. However, in some cases large differences exist between the retrieved AOT and AERONET measurements for which more statistical and physical analysis are necessary to better understand the cause. Nevertheless, the long-term data record and validation produced hold significant value as are the first attempt to better understand the role of aerosols in the Arctic Amplification over land and ocean on the full Arctic scale

    Multi-Sensor Retrieval of Aerosol Optical Properties for Near-Real-Time Applications Using the Metop Series of Satellites: Concept, Detailed Description, and First Validation

    No full text
    The Polar Multi-Sensor Aerosol product (PMAp) is based on the synergistic use of three instruments from the Metop platform, GOME-2, AVHRR, and IASI. The retrieval algorithm includes three major steps: a pre-identification of the aerosol class, a selection of the aerosol model, and a calculation of the Aerosol Optical Depth (AOD). This paper provides a detailed description of the PMAp retrieval, which combines information provided by the three instruments. The retrieved AOD is qualitatively evaluated, and a good temporal as well as spatial performance is observed, including for the transition between ocean and land. More quantitatively, the performance is evaluated by comparison to AERONET in situ measurements. Very good consistency is also observed when compared to other space-based data such as MODIS or VIIRS. The paper demonstrates the ability of this first generation of synergistic products to derive reliable AOD, opening the door for the development of synergistic products from the instruments to be embarked on the coming Metop Second Generation platform. PMAp has been operationally distributed in near-real-time since 2014 over ocean, and 2016 over land

    Multi-Sensor Retrieval of Aerosol Optical Properties for Near-Real-Time Applications Using the Metop Series of Satellites: Concept, Detailed Description, and First Validation

    No full text
    The Polar Multi-Sensor Aerosol product (PMAp) is based on the synergistic use of three instruments from the Metop platform, GOME-2, AVHRR, and IASI. The retrieval algorithm includes three major steps: a pre-identification of the aerosol class, a selection of the aerosol model, and a calculation of the Aerosol Optical Depth (AOD). This paper provides a detailed description of the PMAp retrieval, which combines information provided by the three instruments. The retrieved AOD is qualitatively evaluated, and a good temporal as well as spatial performance is observed, including for the transition between ocean and land. More quantitatively, the performance is evaluated by comparison to AERONET in situ measurements. Very good consistency is also observed when compared to other space-based data such as MODIS or VIIRS. The paper demonstrates the ability of this first generation of synergistic products to derive reliable AOD, opening the door for the development of synergistic products from the instruments to be embarked on the coming Metop Second Generation platform. PMAp has been operationally distributed in near-real-time since 2014 over ocean, and 2016 over land

    Retrieval of aerosol optical depth over the Arctic cryosphere during spring and summer using satellite observations

    Get PDF
    The climate in the Arctic has warmed much more quickly in the last 2 to 3 decades than at the mid-latitudes, i.e., during the Arctic amplification (AA) period. Radiative forcing in the Arctic is influenced both directly and indirectly by aerosols. However, their observation from ground or airborne instruments is challenging, and thus measurements are sparse. In this study, total aerosol optical depth (AOD) is determined from top-of-atmosphere reflectance measurements by the Advanced Along-Track Scanning Radiometer (AATSR) on board ENVISAT over snow and ice in the Arctic using a retrieval called AEROSNOW for the period 2003 to 2011. AEROSNOW incorporates an existing aerosol retrieval algorithm with a cloud-masking algorithm, alongside a novel quality-flagging methodology specifically designed for implementation in the high Arctic region (≥ 72 N). We use the dual-viewing capability of the AATSR instrument to accurately determine the contribution of aerosol to the reflection at the top of the atmosphere for observations over the bright surfaces of the cryosphere in the Arctic. The AOD is retrieved assuming that the surface reflectance observed by the satellite can be well parameterized by a bidirectional snow reflectance distribution function (BRDF). The spatial distribution of AOD shows that high values in spring (March, April, May) and lower values in summer (June, July, August) are observed. The AEROSNOW AOD values are consistent with those from collocated Aerosol Robotic Network (AERONET) measurements, with no systematic bias found as a function of time. The AEROSNOW AOD in the high Arctic was validated by comparison with ground-based measurements at the PEARL, OPAL, Hornsund, and Thule stations. The AEROSNOW AOD value is less than 0.15 on average, and the linear regression of AEROSNOW and AERONET total AOD yields a slope of 0.98, a Pearson correlation coefficient of R=0.86, and a root mean square error (RMSE) of =0.01 for the monthly scale in both spring and summer. The AEROSNOW observation of increased AOD values over the high Arctic cryosphere during spring confirms clearly that Arctic haze events were well captured by this dataset. In addition, the AEROSNOW AOD results provide a novel and unique total AOD data product for the springtime and summertime from 2003 to 2011. These AOD values, retrieved from spaceborne observation, provide a unique insight into the high Arctic cryospheric region at high spatial resolution and temporal coverage

    The arctic cloud puzzle: Using ACLOUD/PASCAL multiplatform observations to unravel the role of clouds and aerosol particles in arctic amplification

    Get PDF
    Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3 project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns
    corecore