1,663 research outputs found

    Verbal Phrases in Lhasa Tibetan--II

    Get PDF

    Peroxynitrite formation and sinusoidal endothelial cell injury during acetaminophen-induced hepatotoxicity in mice

    Get PDF
    INTRODUCTION:Vascular injury and accumulation of red blood cells in the space of Disse (hemorrhage) is a characteristic feature of acetaminophen hepatotoxicity. However, the mechanism of nonparenchymal cell injury is unclear. Therefore, the objective was to investigate if either Kupffer cells or intracellular events in endothelial cells are responsible for the cell damage.RESULTS:Acetaminophen treatment (300 mg/kg) caused vascular nitrotyrosine staining within 1 h. Vascular injury (hemorrhage) occurred between 2 and 4 h. This paralleled the time course of parenchymal cell injury as shown by the increase in plasma alanine aminotransferase activities. Inactivation of Kupffer cells by gadolinium chloride (10 mg/kg) had no significant effect on vascular nitrotyrosine staining, hemorrhage or parenchymal cell injury. In contrast, treatment with allopurinol (100 mg/kg), which prevented mitochondrial injury in hepatocytes, strongly attenuated vascular nitrotyrosine staining and injury.CONCLUSIONS:Our data do not support the hypothesis that acetaminophen-induced superoxide release leading to vascular peroxynitrite formation and endothelial cell injury is caused by activated Kupffer cells. In contrast, the protective effect of allopurinol treatment suggests that, similar to the mechanism in parenchymal cells, mitochondrial oxidant stress and peroxynitrite formation in sinusoidal endothelial cells may be critical for vascular injury after acetaminophen overdose.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Determination of Corresponding Temperature Distribution within CFRP during Laser Cutting

    Get PDF
    AbstractLaser cutting of carbon fiber reinforced plastics as a thermal process results in a thermal load on the material. Due to the high thermal conductivity of carbon fibers, residual heat is conducted along the fibers, away from the laser interaction zone. Common temperature measurement techniques, such as pyrometry and infrared thermography only allow for observation of the temperature development on the surface of the material. In order to achieve information about the temperature distribution within the material during the cutting process, thermochromes and thermocouples were implemented during the laminating process of CFRP. The cutting tests were performed with a single mode fiber laser emitting a continuous wave and at a wavelength of λ = 1080 nm

    Supercell Altermagnets

    Full text link
    Altermagnets are compensated magnets with unconvetional dd, gg and ii-wave spin-channel order in reciprocal space. So far the search for new altermagnetic candidates has been focused on materials in which the magnetic unit cell is identical to the non-magnetic one, i.e. magnetic structures with zero propagation vector. Here, we substantially broaden the family of altermagnetic candidates by predicting supercell altermagnets. Their magnetic unit cell is constructed by enlarging the paramagnetic primitive unit cell, resulting in a non-zero propagation vector for the magnetic structure. This connection of the magnetic configuration to the ordering of sublattices gives an extra degree of freedom to supercell altermagnets, which can allow for the control over the order parameter spatial orientation. We identify realistic candidates MnSe2_2 with a dd-wave order, and RbCoBr3_3, CsCoCr3_3, and BaMnO3_3 with gg-wave order. We demonstrate the reorientation of the order parameter in MnSe2_2, which has two different magnetic configurations, whose energy difference is only 5 meV, opening the possibility of controlling the orientation of the altermagnetic order parameter by external perturbations.Comment: 10 pages, 4 figure
    • …
    corecore