6,839 research outputs found

    Effects of infrequent dried distillers grain supplementation on spring-calving cow performance

    Get PDF
    Feed and supplement costs and the expenses associated with delivery of winter supplements account for a large proportion of the total operating expenditures for cow-calf producers. Cattle grazing low-quality dormant native range (<6% crude protein) typically are unable to consume sufficient protein from the forage base, which limits microbial activity and forage digestion. Supplemental protein often is required to maintain cow body weight and body condition score during the last trimester of pregnancy. Low cow body condition scores at calving are common and may negatively affect lactation, rebreeding rates, and calf weaning weight. Failure to maintain proper nutritional status during this period severely affects short-term cow performance, reduces overall herd productivity, and limits profit potential. The most effective means of supplying supplemental protein to cows consuming dormant native range is to provide a small amount of high-protein feedstuff (>30% crude protein). Dried distillers grains with solubles (DDGS) are a by-product of the ethanol refining process. Distillers grains supply the recommended 30% crude protein level, are readily available, and often are favorably priced compared with more traditional feedstuffs. With the rising costs of inputs in today’s cow-calf sector, reducing cost is necessary to maintain viability of the national cowherd. Reducing the frequency of supplementation results in less labor and fuel use, effectively reducing input costs; however, this is viable only as long as cow performance is maintained at acceptable levels. Therefore, the objective of this study was to examine the effects of infrequent supplementation of dried distillers grains with solubles on cow body weight and body condition score

    Calf health and performance during receiving is not changed by fence-line preconditioning on flint hills range vs. drylot preconditioning

    Get PDF
    Ranch-of-origin preconditioning can improve the welfare and performance of beef calves by decreasing the stress associated with weaning, transport, diet change, and commingling with other calves. Preconditioning methods that involve pasture weaning coupled with maternal contact (i.e., fence-line weaning) have been promoted as possible best management practices for minimizing stress. Prior studies focused on performance and behavior during preconditioning on the ranch of origin. Little information has been published relating to carryover effects of fence-line preconditioning compared with conventional drylot preconditioning on performance and behavior during feedlot receiving. Our objectives were to measure growth and health during a 28-day ranch-of-origin preconditioning phase and during a 60-day feedlot receiving phase among beef calves subjected to 1 of 3 ranch-of-origin preconditioning programs: (1) drylot preconditioning + dam separation, (2) pasture preconditioning + fence-line contact with dams, and (3) pasture preconditioning + fence-line contact with dams + supplemental feed delivered in a bunk. In addition, we recorded incidences of behavioral distress among these treatments during first 7 days of feedlot receiving

    Avoiding the avoidable: Towards a European heat waves risk governance

    Get PDF
    The death toll of recent heat waves in developed countries has been remarkably high, contradicting the common assumption that high levels of economic and technological development automatically lead to lower vulnerability to weather extremes. Future climate change may further increase this vulnerability. In this article we examine some recent evidence of heat wave-related mortality and we conclude that while economic wealth and technological capacity might be a necessary condition for adequately coping with adverse climate change effects, they are not sufficient. Questions of awareness, preparedness, organizational issues, and actor networks have to be addressed in a proactive and focused manner in order to avoid future heat wave damages. We propose some practical consequences for heat wave adaptation measures by adopting a risk governance framework that can be universally applied, as it is sufficiently flexible to deal with the multi-level and often fragmented reality of existing coping measures

    Metastability of a granular surface in a spinning bucket

    Full text link
    The surface shape of a spinning bucket of granular material is studied using a continuum model of surface flow developed by Bouchaud et al. and Mehta et al. An experimentally observed central subcritical region is reproduced by the model. The subcritical region occurs when a metastable surface becomes unstable via a nonlinear instability mechanism. The nonlinear instability mechanism destabilizes the surface in large systems while a linear instability mechanism is relevant for smaller systems. The range of angles in which the granular surface is metastable vanishes with increasing system size.Comment: 8 pages with postscript figures, RevTex, to appear in Phys. Rev.

    Creep motion in a granular pile exhibiting steady surface flow

    Full text link
    We investigate experimentally granular piles exhibiting steady surface flow. Below the surface flow, it has been believed exisitence of a `frozen' bulk region, but our results show absence of such a frozen bulk. We report here that even the particles in deep layers in the bulk exhibit very slow flow and that such motion can be detected at an arbitrary depth. The mean velocity of the creep motion decays exponentially with depth, and the characteristic decay length is approximately equal to the particle-size and independent of the flow rate. It is expected that the creep motion we have seeen is observable in all sheared granular systems.Comment: 3 pages, 4 figure

    A Model for the Propagation of Sound in Granular Materials

    Full text link
    This paper presents a simple ball-and-spring model for the propagation of small amplitude vibrations in a granular material. In this model, the positional disorder in the sample is ignored and the particles are placed on the vertices of a square lattice. The inter-particle forces are modeled as linear springs, with the only disorder in the system coming from a random distribution of spring constants. Despite its apparent simplicity, this model is able to reproduce the complex frequency response seen in measurements of sound propagation in a granular system. In order to understand this behavior, the role of the resonance modes of the system is investigated. Finally, this simple model is generalized to include relaxation behavior in the force network -- a behavior which is also seen in real granular materials. This model gives quantitative agreement with experimental observations of relaxation.Comment: 21 pages, requires Harvard macros (9/91), 12 postscript figures not included, HLRZ preprint 6/93, (replacement has proper references included

    Clustering and Non-Gaussian Behavior in Granular Matter

    Full text link
    We investigate the properties of a model of granular matter consisting of NN Brownian particles on a line subject to inelastic mutual collisions. This model displays a genuine thermodynamic limit for the mean values of the energy and the energy dissipation. When the typical relaxation time τ\tau associated with the Brownian process is small compared with the mean collision time τc\tau_c the spatial density is nearly homogeneous and the velocity probability distribution is gaussian. In the opposite limit τ≫τc\tau \gg \tau_c one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the gaussian one.Comment: 4 pages including 3 eps figures, LaTex, added references, corrected typos, minimally changed contents and abstract, to published in Phys.Rev.Lett. (tentatively on 28th of October, 1998

    Effects of Altering Supplementation Frequency During the Pre-Partum Period of Beef Cows Grazing Dormant Native Range

    Get PDF
    Spring-calving beef cattle that are grazing low-quality (\u3c 7% crude protein) dormant forage typically are unable to meet their maintenance requirements for protein. Providing a protein supplement (\u3e 30% crude protein) is recommended to decrease losses of body weight and body condition. Nutrient supplementation when forage quality is poor or limited is one of the largest expenditures for forage-based beef cattle operations. The expansion of the ethanol industry has afforded many producers in corn and sorghum-producing regions an alternative to traditional oilseed-based protein supplements. The availability and nutrient profile of distiller’s grains with solubles (DDG) has made it popular as a supplement for cows that are grazing dormant lowquality forages. Decreasing supplementation frequency reduces costs for labor and fuel. Previous research has shown no difference in body weights or body condition scores of cows supplemented with distiller’s grains daily, once every three days, or once every six days; however, the proportion of cows that ate hay during the 60 minutes immediately after supplementation was less on the day of supplementation for cows supplemented once every six days compared to cows supplemented daily. The observed decrease in hay consumption following supplementation could potentially decrease total organic matter intake during late gestation. More frequent supplementation may increase organic matter intake and improve performance during the month before parturition. Therefore, the objective of this study was to evaluate effects of altering frequency of supplementing distiller’s grains during the last 28 days of gestation with respect to performance of spring-calving beef cows consuming low-quality dormant native range

    Uncertainty reconciles complementarity with joint measurability

    Full text link
    The fundamental principles of complementarity and uncertainty are shown to be related to the possibility of joint unsharp measurements of pairs of noncommuting quantum observables. A new joint measurement scheme for complementary observables is proposed. The measured observables are represented as positive operator valued measures (POVMs), whose intrinsic fuzziness parameters are found to satisfy an intriguing pay-off relation reflecting the complementarity. At the same time, this relation represents an instance of a Heisenberg uncertainty relation for measurement imprecisions. A model-independent consideration show that this uncertainty relation is logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and uncertainty - entangled in joint path-interference measurements". This new version focuses on the "measurement uncertainty relation" and its role, disentangling this issue from the special context of path interference duality. See also http://www.vjquantuminfo.org (October 2003
    • …
    corecore