42 research outputs found

    A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents

    Get PDF
    Aim Plant-endophytic associations exist only when equilibrium is maintained between both partners. This study analyses the properties of endophytic fungi inhabiting a halophyte growing in high soil salinity and tests whether these fungi are beneficial or detrimental when non-host plants are inoculated. Method Fungi were isolated from Salicornia europaea collected from two sites differing in salinization history (anthropogenic and naturally saline) and analyzed for plant growth promoting abilities and non-host plant interactions. Results Most isolated fungi belonged to Ascomycota (96%) including dematiaceous fungi and commonly known plant pathogens and saprobes. The strains were metabolically active for siderophores, polyamines and indole-3-acetic acid (mainly Aureobasidium sp.) with very low activity for phosphatases. Many showed proteolytic, lipolytic, chitinolytic, cellulolytic and amylolytic activities but low pectolytic activity. Different activities between similar fungal species found in both sites were particularly seen for Epiccocum sp., Arthrinium sp. and Trichoderma sp. Inoculating the non-host Lolium perenne with selected fungi increased plant growth, mainly in the symbiont (Epichloë)-free variety. Arthrinium gamsii CR1-9 and Stereum gausapatum ISK3-11 were most effective for plant growth promotion. Conclusions This research suggests that host lifestyle and soil characteristics have a strong effect on endophytic fungi, and environmental stress could disturb the plant-fungi relations. In favourable conditions, these fungi may be effective in facilitating crop production in non-cultivable saline lands

    The association between subjective memory complaint and objective cognitive function in older people with previous major depression

    Get PDF
    The goal of this study is to investigate associations between subjective memory complaint and objective cognitive performance in older people with previous major depression-a high-risk sample for cognitive impairment and later dementia. A cross-sectional study was carried out in people aged 60 or over with previous major depression but not fulfilling current major depression criteria according to DSM-IV-TR. People with dementia or Mini-Mental State Examination score less than 17 were excluded. Subjective memory complaint was defined on the basis of a score ≧4 on the subscale of Geriatric Mental State schedule, a maximum score of 8. Older people aged equal or over 60 without any psychiatric diagnosis were enrolled as healthy controls. Cognitive function was evaluated using a series of cognitive tests assessing verbal memory, attention/speed, visuospatial function, verbal fluency, and cognitive flexibility in all participants. One hundred and thirteen older people with previous major depression and forty-six healthy controls were enrolled. Subjective memory complaint was present in more than half of the participants with depression history (55.8%). Among those with major depression history, subjective memory complaint was associated with lower total immediate recall and delayed verbal recall scores after adjustment. The associations between subjective memory complaint and worse memory performance were stronger in participants with lower depressive symptoms (Hamilton Depression Rating Scale score<7). The results suggest subjective memory complaint may be a valid appraisal of memory performance in older people with previous major depression and consideration should be given to more proactive assessment and follow-up in these clinical samples

    Maintaining safe lung cancer surgery during the COVID-19 pandemic in a global city.

    Get PDF
    Background: SARS-CoV-2 has challenged health service provision worldwide. This work evaluates safe surgical pathways and standard operating procedures implemented in the high volume, global city of London during the first wave of SARS-CoV-2 infection. We also assess the safety of minimally invasive surgery(MIS) for anatomical lung resection. Methods: This multicentre cohort study was conducted across all London thoracic surgical units, covering a catchment area of approximately 14.8 Million. A Pan-London Collaborative was created for data sharing and dissemination of protocols. All patients undergoing anatomical lung resection 1st March-1st June 2020 were included. Primary outcomes were SARS-CoV-2 infection, access to minimally invasive surgery, post-operative complication, length of intensive care and hospital stay (LOS), and death during follow up. Findings: 352 patients underwent anatomical lung resection with a median age of 69 (IQR: 35-86) years. Self-isolation and pre-operative screening were implemented following the UK national lockdown. Pre-operative SARS-CoV-2 swabs were performed in 63.1% and CT imaging in 54.8%. 61.7% of cases were performed minimally invasively (MIS), compared to 59.9% pre pandemic. Median LOS was 6 days with a 30-day survival of 98.3% (comparable to a median LOS of 6 days and 30-day survival of 98.4% pre-pandemic). Significant complications developed in 7.3% of patients (Clavien-Dindo Grade 3-4) and 12 there were re-admissions(3.4%). Seven patients(2.0%) were diagnosed with SARS-CoV-2 infection, two of whom died (28.5%). Interpretation: SARS-CoV-2 infection significantly increases morbidity and mortality in patients undergoing elective anatomical pulmonary resection. However, surgery can be safely undertaken via open and MIS approaches at the peak of a viral pandemic if precautionary measures are implemented. High volume surgery should continue during further viral peaks to minimise health service burden and potential harm to cancer patients. Funding: This work did not receive funding

    Structural styles, hydrocarbon prospects and potential in the Salt Range Potwar Plateau, North Pakistan.

    No full text
    The Salt Range/Potwar Plateau (SRPP) is part of the Himalayan foreland and an important petroleum province in north Pakistan. The hydrocarbons are commonly produced from stacked Cambrian to Eocene clastic and carbonate reservoirs which have an average thickness of 1 km. These strata are overlain by at least 5 km of Miocene and younger continental molasse sedimentation in the deepest part of the foreland basin. Surface and subsurface (seismic interpretations and borehole data) geology combined with the timing and the patterns of sedimentation has allowed to interpret the deformation as thin skinned, with a detachment in weak Eocambrian evaporates and the development of ramp-and-flat structures, since about 8 Ma. We have reviewed the structural interpretations with new borehole logs, field geology, and reserve estimates in this paper to precisely define oil-field structures with a view on future exploration. As a result of this work, 12 oil fields are classified as three detachment folds, four fault-propagation folds, four pop-ups, and one triangle zone structure. The latter two are identified as better prospects with the last one as the best with estimated reserves of 51 million barrels of oil (MMBO). Hence, the triangle zones along with other ramp-and-flat structures from the North Potwar Deformed Zone (NPDZ) are recognized to provide potential future prospects. Finally, a 40-km-long structural cross section from NPDZ is used to discuss complex deformation of the triangle zone and duplex structures as future potential prospects. About 55 km of shortening across the NPDZ during Plio-Pleistocene time is calculated, which has important bearing on the geometry of prospects, reserve calculations, and the future exploration

    Structural Interpretation and Geo-Hazard Assessment of 2005 Kashmir Earthquake, North Pakistan.

    No full text
    The 08 October 2005, magnitude (Mw) 06 Kashmir earthquake occurred along the Balakot–Bagh fault (BBF) with about 30° dip toward NE in the internal part of the western Himalayas in north Pakistan. It was accompanied by a ground rupture of about 75 km with an average slip of about 5 m along the causative fault. The epicenter of the thrust was located at about 19 km to the NE of its surface trace in Muzaffarabad with about 11 km depth of the hypocenter. The geometry of the fault based on a structural cross section has allowed us to interpret it as a thrust restricted to a roof sequence along a triangle zone across the Hazara–Kashmir syntaxis (HKS). The triangle zone is occupied at depth by a wedge of the Higher Himalayan Sequence (HHS) in the core zone of the HKS. The core–wedge is bounded between the NE-dipping BBF and SE- to SW-dipping thrust stack of the Lesser Himalayan Sequence (LHS) along the northeastern and southwestern limb of the HKS, respectively. Based on surface geology, the overlapping BBF and MBT are interpreted to merge at depth in a roof thrust of Pre-Cambrian (Late Proterozoic) rocks above a duplex which is inferred to have a floor thrust in Early Proterozoic/Archean rocks. The core–wedge is located over a ramp which is connected to the floor thrust in the basement. The BBF is inferred to be active, at least since 1–0.5 Ma, with recurrence interval of about 625 ± 125 years. This out-of-sequence deformation is represented by linear seismicity, both along emergent and blind thrusts in the system, with likelihood of major events as a result of strain buildup due to slow convergence rates (~7 mm/year) in the region. Many towns located along the active fault trace were destroyed or largely damaged due to the earthquake. Major destruction of human dwellings and infrastructure occurred as a consequence of earthquake-triggered landslides, mostly along fault, high river terraces, and road cuts. To minimize future damages in earthquake-prone areas, several mitigation measures are suggested including: (1) avoiding new settlements near the fault trace and landslide susceptible areas, (2) establishment of new township schemes in relatively safer areas with earthquake-sustainable structural designs, and (3) extensive forestation for slope stability, erosion control, and provision of wood for flexible earthquake-resistant structures. The measures are needed for the sustainable development of the region

    Structural interpretation and geo-hazard assessment of a locking line: 2005 Kashmir earthquake, western Himalayas

    No full text
    The 08 October 2005, magnitude (Mw) 06 Kashmir earthquake occurred along the Balakot–Bagh fault (BBF) with about 30° dip toward NE in the internal part of the western Himalayas in north Pakistan. It was accompanied by a ground rupture of about 75 km with an average slip of about 5 m along the causative fault. The epicenter of the thrust was located at about 19 km to the NE of its surface trace in Muzaffarabad with about 11 km depth of the hypocenter. The geometry of the fault based on a structural cross section has allowed us to interpret it as a thrust restricted to a roof sequence along a triangle zone across the Hazara–Kashmir syntaxis (HKS). The triangle zone is occupied at depth by a wedge of the Higher Himalayan Sequence (HHS) in the core zone of the HKS. The core–wedge is bounded between the NE-dipping BBF and SE- to SW-dipping thrust stack of the Lesser Himalayan Sequence (LHS) along the northeastern and southwestern limb of the HKS, respectively. Based on surface geology, the overlapping BBF and MBT are interpreted to merge at depth in a roof thrust of Pre-Cambrian (Late Proterozoic) rocks above a duplex which is inferred to have a floor thrust in Early Proterozoic/Archean rocks. The core–wedge is located over a ramp which is connected to the floor thrust in the basement. The BBF is inferred to be active, at least since 1–0.5 Ma, with recurrence interval of about 625 ± 125 years. This out-of-sequence deformation is represented by linear seismicity, both along emergent and blind thrusts in the system, with likelihood of major events as a result of strain buildup due to slow convergence rates (~7 mm/year) in the region. Many towns located along the active fault trace were destroyed or largely damaged due to the earthquake. Major destruction of human dwellings and infrastructure occurred as a consequence of earthquake-triggered landslides, mostly along fault, high river terraces, and road cuts. To minimize future damages in earthquake-prone areas, several mitigation measures are suggested including: (1) avoiding new settlements near the fault trace and landslide susceptible areas, (2) establishment of new township schemes in relatively safer areas with earthquake-sustainable structural designs, and (3) extensive forestation for slope stability, erosion control, and provision of wood for flexible earthquake-resistant structures. The measures are needed for the sustainable development of the region
    corecore