62 research outputs found

    Genomics and genetics of <em>Sulfolobus islandicus</em> LAL14/1, a model hyperthermophilic archaeon

    Get PDF
    The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin–antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus–host interactions and the CRISPR/Cas defence mechanism in Archaea

    Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance

    Get PDF
    Yeast Qri7 and human OSGEPL are members of the orthologous Kae1(OSGEP)/YgjD protein family, the last class of universally conserved proteins without assigned function. Phylogenetic analyses indicate that the eukaryotic Qri7(OSGEPL) proteins originated from bacterial YgjD proteins. We have recently shown that the archaeal Kae1 protein is a DNA-binding protein that exhibits apurinic endonuclease activity in vitro. We show here that the Qri7/OSGEPL proteins localize in mitochondria and are involved in mitochondrial genome maintenance in two model eukaryotic organisms, Saccharomyces cerevisiae and Caenorhabditis elegans. Furthermore, S. cerevisiae Qri7 complements the loss of the bacterial YgjD protein in Escherichia coli, suggesting that Qri7/OSGEPL and YgjD proteins have retained similar functions in modern organisms. We suggest to name members of the Kae1(OSGEP)/YgjD family UGMP, for Universal Genome Maintenance Proteins

    FITBAR: a web tool for the robust prediction of prokaryotic regulons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding of regulatory proteins to their specific DNA targets determines the accurate expression of the neighboring genes. The <it>in silico </it>prediction of new binding sites in completely sequenced genomes is a key aspect in the deeper understanding of gene regulatory networks. Several algorithms have been described to discriminate against false-positives in the prediction of new binding targets; however none of them has been implemented so far to assist the detection of binding sites at the genomic scale.</p> <p>Results</p> <p>FITBAR (Fast Investigation Tool for Bacterial and Archaeal Regulons) is a web service designed to identify new protein binding sites on fully sequenced prokaryotic genomes. This tool consists in a workbench where the significance of the predictions can be compared using different statistical methods, a feature not found in existing resources. The Local Markov Model and the Compound Importance Sampling algorithms have been implemented to compute the P-value of newly discovered binding sites. In addition, FITBAR provides two optimized genomic scanning algorithms using either log-odds or entropy-weighted position-specific scoring matrices. Other significant features include the production of a detailed genomic context map for each detected binding site and the export of the search results in spreadsheet and portable document formats. FITBAR discovery of a high affinity <it>Escherichia coli </it>NagC binding site was validated experimentally <it>in vitro </it>as well as <it>in vivo </it>and published.</p> <p>Conclusions</p> <p>FITBAR was developed in order to allow fast, accurate and statistically robust predictions of prokaryotic regulons. This feature constitutes the main advantage of this web tool over other matrix search programs and does not impair its performance. The web service is available at <url>http://archaea.u-psud.fr/fitbar</url>.</p

    Archaeal tyrosine recombinases

    No full text
    The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases which disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts

    VAPEX: an interactive web server for the deep exploration of natural virus and phage genomes

    No full text
    Abstract Motivation Studying the genetic makeup of viruses and phages through genome analysis is crucial for comprehending their function in causing diseases, progressing medicine, tracing their evolutionary history, monitoring the environment, and creating innovative biotechnologies. However, accessing the necessary data can be challenging due to a lack of dedicated comparative genomic tools and viral and phage databases, which are often outdated. Moreover, many wet bench experimentalists may not have the computational proficiency required to manipulate large amounts of genomic data. Results We have developed VAPEX (Virus And Phage EXplorer), a web server which is supported by a database and features a user-friendly web interface. This tool enables users to easily perform various genomic analysis queries on all natural viruses and phages that have been fully sequenced and are listed in the NCBI compendium. VAPEX therefore excels in producing visual depictions of fully resolved synteny maps, which is one of its key strengths. VAPEX has the ability to exhibit a vast array of orthologous gene classes simultaneously through the use of symbolic representation. Additionally, VAPEX can fully analyze user-submitted viral and phage genomes, including those that have not yet been annotated. Availability and implementation VAPEX can be accessed from all current web browsers such as Chrome, Firefox, Edge, Safari, and Opera. VAPEX is freely accessible at https://archaea.i2bc.paris-saclay.fr/vapex/

    Pervasive Suicidal Integrases in Deep-Sea Archaea

    No full text
    International audienceMobile genetic elements (MGEs) often encode integrases which catalyze the site-specific insertion of their genetic information into the host genome and the reverse reaction of excision. Hyperthermophilic archaea harbor integrases belonging to the SSV-family which carry the MGE recombination site within their open reading frame. Upon integration into the host genome, SSV integrases disrupt their own gene into two inactive pseudogenes and are termed suicidal for this reason. The evolutionary maintenance of suicidal integrases, concurring with the high prevalence and multiples recruitments of these recombinases by archaeal MGEs, is highly paradoxical. To elucidate this phenomenon, we analyzed the wide phylogenomic distribution of a prominent class of suicidal integrases which revealed a highly variable integration site specificity. Our results highlighted the remarkable hybrid nature of these enzymes encoded from the assembly of inactive pseudogenes of different origins. The characterization of the biological properties of one of these integrases, Int pT26-2 showed that this enzyme was active over a wide range of temperatures up to 99 C and displayed a less-stringent site specificity requirement than comparable integrases. These observations concurred in explaining the pervasiveness of these suicidal integrases in the most hyperthermophilic organisms. The biochemical and phylogenomic data presented here revealed a target site switching system operating on highly thermostable integrases and suggested a new model for split gene reconstitution. By generating fast-evolving pseudogenes at high frequency, suicidal integrases constitute a powerful model to approach the molecular mechanisms involved in the generation of active genes variants by the recombination of proto-genes

    BAGET 2.0: an updated web tool for the effortless retrieval of prokaryotic gene context and sequence

    No full text
    MOTIVATION: The retrieval of a single gene sequence and context from completely sequenced bacterial and archaeal genomes constitutes an intimidating task for the wet bench biologist. Existing web-based genome browsers are either too complex for routine use or only provide a subset of the available prokaryotic genomes. RESULTS: We have developed BAGET 2.0 (Bacterial and Archaeal Gene Exploration Tool), an updated web service granting access in just three mouse clicks to the sequence and synteny of any gene from completely sequenced bacteria and archaea. User-provided annotated genomes can be processed as well. BAGET 2.0 relies on a local database updated on a daily basis. AVAILABILITY AND IMPLEMENTATION: BAGET 2.0 befits all current browsers such as Chrome, Firefox, Edge, Opera and Safari. Internet Explorer 11 is supported. BAGET 2.0 is freely accessible at https://archaea.i2bc.paris-saclay.fr/baget/
    corecore