15 research outputs found

    A comparison between dissection techniques for the assessment of parity in Anopheles arabiensis and determination of sac stage in mosquitoes alive or dead on collection

    Get PDF
    BACKGROUND: The determination of parous rates in mosquitoes, despite numerous shortcomings, remains a tool to evaluate the effectiveness of control programs and to determine vectorial capacity in malaria vectors. Two dissection techniques are used for this. For one, the tracheoles of dried ovaries are examined with a compound microscope and in the other the follicular stalk of ovaries is examined, wet, with a stereomicroscope. The second method also enables the sac stage of parous insects (which provides information on the duration of the oviposition cycle) and the mated status of insects to be determined. Despite widespread use the two techniques have not previously been compared. METHODS: We compared the two dissection techniques using Anopheles arabiensis, collected with a tent-trap in Eritrea. The paired ovaries were removed in water and one was examined by each method. From a separate set of dissections from Tanzania, we also determined if the sac stages of Anopheles gambiae s.l. (83% of 183 identified by PCR being Anopheles arabiensis the remainder being A. gambiae) that were alive on collection were different to those that died on collection and what the implications for vectorial capacity estimation might be. RESULTS: Seven per cent of the dry ovaries could not be classified due to granulation (yolk) in the ovariole that obscured the tracheoles. The sensitivity of the dry dissection was 88.51% (CI [79.88-94.35%]) and the specificity was 93.55% (CI [87.68-97.17%]) among the 211 ovaries that could be classified by the dry technique and compared to the ovaries dissected wet. 1,823 live and 1,416 dead from Furvela tent-traps, CDC light-trap and window-trap collections were dissected 'wet' from Tanzania. In these collections parous insects were more likely to die compared to nulliparous ones. The proportion of parous mosquitoes with 'a' sacs (indicative of recent oviposition) was significantly greater in insects that were dead (0.36) on collection in the morning compared to those that were alive (0.12) (Chi square 138.93, p < 0.001). There was a preponderance of newly emerged virgin insects in the outdoor collection (Chi sq = 8.84, p = 0.003). CONCLUSIONS: In anophelines the examination of mosquito ovaries using transmitted light in a 'wet' dissection is a more useful and informative technique than examination of dry ovaries. In order to correctly estimate the duration of the oviposition cycle mosquitoes should be dissected as soon as possible after collection. Younger insects were more likely to attempt to feed outdoors rather than indoors.publishersversionpublishe

    Exploring the origin and degree of genetic isolation of Anopheles gambiae from the islands of São Tomé and Príncipe, potential sites for testing transgenic-based vector control

    Get PDF
    The evolutionary processes at play between island and mainland populations of the malaria mosquito vector Anopheles gambiae sensu stricto are of great interest as islands may be suitable sites for preliminary application of transgenic-based vector control strategies. São Tomé and Príncipe, located off the West African coast, have received such attention in recent years. This study investigates the degree of isolation of An. gambiae s.s. populations between these islands and the mainland based on mitochondrial and ribosomal DNA molecular data. We identify possible continental localities from which these island populations derived. For these purposes, we used FST values, haplotype networks, and nested clade analysis to estimate migration rates and patterns. Haplotypes from both markers are geographically widespread across the African continent. Results indicate that the populations from São Tomé and Príncipe are relatively isolated from continental African populations, suggesting they are promising sites for test releases of transgenic individuals. These island populations are possibly derived from two separate continental migrations. This result is discussed in the context of the history of the African slave trade with respect to São Tomé and Príncipe

    Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae

    Get PDF
    How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S) in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr) to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs

    Some like it hot: a differential response to changing temperatures by the malaria vectors Anopheles funestus and An. gambiae s.l.

    No full text
    Background With the possible implications of global warming, the effect of temperature on the dynamics of malaria vectors in Africa has become a subject of increasing interest. Information from the field is, however, relatively sparse. We describe the effect of ambient temperature over a five-year period on the dynamics of An. funestus and An. gambiae s.l., collected from a single village in southern Mozambique where temperatures varied from a night-time minimum of 6 °C in the cool season to a daytime maximum of 35 °C in the hot season. Results Mean daily air temperatures varied from 34 °C to 20 °C and soil temperatures varied from 26 °C to 12 °C. Diurnal variation was greatest in the cooler months of the year and were greater in air temperatures than soil temperatures. During the study 301, 705 female An. funestus were collected in 6,043 light-trap collections, 161, 466 in 7,397 exit collections and 16, 995 in 1,315 resting collections. The equivalent numbers for An. gambiae s.l. are 72,475 in light-traps, 33, 868 in exit collections and 5,333 from indoor resting collections. Numbers of mosquito were greatest in the warmer months. Numbers of An. gambiae s.l. went through a one hundredfold change (from a mean of 0.14 mosquitoes a night to 14) whereas numbers of An. funestus merely doubled (from a mean of 20 to 40 a night). The highest environmental correlations and mosquito numbers were between mean air temperature (r2 = 0.52 for An. funestus and 0.77 for An. gambiae s.l.). Numbers of mosquito collected were not related to rainfall with lags of up to four weeks. Numbers of both gravid and unfed An. gambiae complex females in exit collections continued to increase at all temperatures recorded but gravid females of An. funestus decreased at temperatures above 28 °C. Overall the numbers of gravid and unfed An. funestus collected in exit collections were not correlated (p = 0.07). For an unknown reason the number of An. gambiae s.l. fell below monitoring thresholds during the study. Conclusions Mean air temperature was the most important environmental parameter affecting both vectors in this part of Mozambique. Numbers of An. gambiae s.l. increased at all temperatures recorded whilst An. funestus appeared to be adversely affected by temperatures of 28 °C and above. These differences may influence the distribution of the vectors as the planet warms

    Simple techniques for a complex problem: Sampling malaria vectors in Africa

    No full text
    Disease surveillance, including entomological surveillance, serves as the basis for all vector control program activities. How to do this in the most ecologically sensible way, so that the most suitable, naturalistic method, of control for that population can be identified, should be a priority. Here we describe a set of techniques, whose only energy requirement is a torch (flashlight), that can be used to collect both endo and exophagic and endo and exophilic malaria vectors. The data obtained over a number of years from an individual sentinel house in a village in Mozambique and from a village in Cambodia using these kinds of collection techniques, is presented
    corecore