83 research outputs found

    Modulation of NKG2D expression in human CD8(+) T cells corresponding with tuberculosis drug cure.

    Get PDF
    BACKGROUND: Biomarkers predicting tuberculosis treatment response and cure would facilitate drug development. This study investigated expression patterns of the co-stimulation molecule NKG2D in human tuberculosis and treatment to determine its potential usefulness as a host biomarker of tuberculosis drug efficacy. METHODS: Tuberculosis patients (n = 26) were recruited in Lahore, Pakistan, at diagnosis and followed up during treatment. Household contacts (n = 24) were also recruited. NKG2D expression was measured by qRT-PCR in RNA samples both ex vivo and following overnight mycobacterial stimulation in vitro. Protein expression of NKG2D and granzyme B was measured by flow cytometry. RESULTS: NKG2D expression in newly diagnosed tuberculosis patients was similar to household contacts in ex vivo RNA, but was higher following in vitro stimulation. The NKG2D expression was dramatically reduced by intensive phase chemotherapy, in both ex vivo blood RNA and CD8(+) T cell protein expression, but then reverted to higher levels after the continuation phase in successfully treated patients. CONCLUSION: The changes in NKG2D expression through successful treatment reflect modulation of the peripheral cytotoxic T cell response. This likely reflects firstly in vivo stimulation by live Mycobacterium tuberculosis, followed by the response to dead bacilli, antigen-release and finally immunopathology resolution. Such changes in host peripheral gene expression, alongside clinical and microbiological indices, could be developed into a biosignature of tuberculosis drug-induced cure to be used in future clinical trials

    PD-1, PD-L1 and PD-L2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Protein during the Intensive Phase of Tuberculosis Treatment.

    Get PDF
    BACKGROUND: The PD-1 axis is a cell intrinsic immunoregulatory pathway that mediates T cell exhaustion in chronic infection particularly in some viral infections. We hypothesized that PD-1, PD-L1 and PD-L2 would be highly expressed in untreated tuberculosis patients compared to controls due to their chronic infection and would decrease with successful TB treatment. MATERIALS AND METHODS: Untreated tuberculosis patients (n = 26) were recruited at diagnosis and followed up during treatment. Household contacts (n = 24) were recruited to establish baseline differences. Blood gene expression ex vivo was investigated using qRT-PCR. Flow cytometry was performed to establish protein expression patterns. RESULTS: PD-L1 gene expression was found to be elevated in active TB disease; however, this was not observed for PD-1 or PD-L2. The intensive phase of TB treatment was associated with a significant decline in PD-1, PD-L1 and PD-L2 gene expression. PD-1 protein expression on the surface of NK cells, CD8+ and CD4+ T cells was similar in patients with active TB disease compared to controls but declined with successful TB treatment, with the greatest decline occurring on the NK cells followed by CD8+ T cells and then CD4+ T cells. Granzyme B/PD-1 co-expression declined with successful intensive phase treatment. CONCLUSION: Modulation of PD-1/PD-L1 pathway through TB treatment indicates changes in the peripheral T cell response caused by live Mycobacterium tuberculosis (Mtb) followed by the response to dead bacilli, antigen-release and immuno-pathology resolution. The PD-1 axis could be a host drug target for immunomodulatory treatments in the future

    CCL2 Responses to Mycobacterium tuberculosis Are Associated with Disease Severity in Tuberculosis

    Get PDF
    BACKGROUND Leucocyte activating chemokines such as CCL2, CCL3, and CXCL8 together with proinflammatory IFNgamma, TNFalpha and downmodulatory IL10 play a central role in the restriction of M. tuberculosis infections, but is unclear whether these markers are indicative of tuberculosis disease severity. METHODOLOGY We investigated live M. tuberculosis- and M. bovis BCG-induced peripheral blood mononuclear cell responses in patients with tuberculosis (TB) and healthy endemic controls (ECs, n = 36). TB patients comprised pulmonary (PTB, n = 34) and extrapulmonary groups, subdivided into those with less severe localized extrapulmonary TB (L-ETB, n = 16) or severe disseminated ETB (D-ETB, n = 16). Secretion of CCL2, IFNgamma, IL10 and CCL3, and mRNA expression of CCL2, TNFalpha, CCL3 and CXCL8 were determined. RESULTS M. tuberculosis- and BCG-induced CCL2 secretion was significantly increased in both PTB and D-ETB (p<0.05, p<0.01) as compared with L-ETB patients. CCL2 secretion in response to M. tuberculosis was significantly greater than to BCG in the PTB and D-ETB groups. M. tuberculosis-induced CCL2 mRNA transcription was greater in PTB than L-ETB (p = 0.023), while CCL2 was reduced in L-ETB as compared with D-ETB (p = 0.005) patients. M. tuberculosis-induced IFNgamma was greater in L-ETB than PTB (p = 0.04), while BCG-induced IFNgamma was greater in L-ETB as compared with D-ETB patients (p = 0.036). TNFalpha mRNA expression was raised in PTB as compared with L-ETB group in response to M. tuberculosis (p = 0.02) and BCG (p = 0.03). Mycobacterium-induced CCL3 and CXCL8 was comparable between TB groups. CONCLUSIONS The increased CCL2 and TNFalpha in PTB patients may support effective leucocyte recruitment and M. tuberculosis localization. CCL2 alone is associated with severity of TB, possibly due to increased systemic inflammation found in severe disseminated TB or due to increased monocyte infiltration to lung parenchyma in pulmonary disease

    Gene expression profiles classifying clinical stages of tuberculosis and monitoring treatment responses in Ethiopian HIV-negative and HIV-positive cohorts.

    Get PDF
    BACKGROUND: Validation of previously identified candidate biomarkers and identification of additional candidate gene expression profiles to facilitate diagnosis of tuberculosis (TB) disease and monitoring treatment responses in the Ethiopian context is vital for improving TB control in the future. METHODS: Expression levels of 105 immune-related genes were determined in the blood of 80 HIV-negative study participants composed of 40 active TB cases, 20 latent TB infected individuals with positive tuberculin skin test (TST+), and 20 healthy controls with no Mycobacterium tuberculosis (Mtb) infection (TST-), using focused gene expression profiling by dual-color Reverse-Transcription Multiplex Ligation-dependent Probe Amplification assay. Gene expression levels were also measured six months after anti-TB treatment (ATT) and follow-up in 38 TB patients. RESULTS: The expression of 15 host genes in TB patients could accurately discriminate between TB cases versus both TST+ and TST- controls at baseline and thus holds promise as biomarker signature to classify active TB disease versus latent TB infection in an Ethiopian setting. Interestingly, the expression levels of most genes that markedly discriminated between TB cases versus TST+ or TST- controls did not normalize following completion of ATT therapy at 6 months (except for PTPRCv1, FCGR1A, GZMB, CASP8 and GNLY) but had only fully normalized at the 18 months follow-up time point. Of note, network analysis comparing TB-associated host genes identified in the current HIV-negative TB cohort to TB-associated genes identified in our previously published Ethiopian HIV-positive TB cohort, revealed an over-representation of pattern recognition receptors including TLR2 and TLR4 in the HIV-positive cohort which was not seen in the HIV-negative cohort. Moreover, using ROC cutoff ≥ 0.80, FCGR1A was the only marker with classifying potential between TB infection and TB disease regardless of HIV status. CONCLUSIONS: Our data indicate that complex gene expression signatures are required to measure blood transcriptomic responses during and after successful ATT to fully diagnose TB disease and characterise drug-induced relapse-free cure, combining genes which resolve completely during the 6-months treatment phase of therapy with genes that only fully return to normal levels during the post-treatment resolution phase

    How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS.

    Get PDF
    We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states. Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production. These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS

    Host transcriptional response to TB preventive therapy differentiates two sub-groups of IGRA-positive individuals.

    Get PDF
    We hypothesised that individuals with immunological sensitisation to Mycobacterium tuberculosis (Mtb), conventionally regarded as evidence of latent tuberculosis infection (LTBI), would demonstrate binary responses to preventive therapy (PT), reflecting the differential immunological consequences of the sterilisation of viable infection in those with active Mtb infection versus no Mtb killing in those who did not harbour viable bacilli. We investigated longitudinal whole blood transcriptional profile responses to PT of Interferon gamma release assay (IGRA)-positive tuberculosis contacts and IGRA-negative, tuberculosis-unexposed controls. Longitudinal unsupervised clustering analysis with a subset of 474 most variable genes in antigen-stimulated blood separated the IGRA-positive participants into two distinct subgroups, one of which clustered with the IGRA-negative controls. 117 probes were differentially expressed over time between the two cluster groups, many of them associated with immunological pathways important in mycobacterial control. We contend that the differential host RNA response reflects lack of Mtb viability in the group that clustered with the IGRA-negative unexposed controls, and Mtb viability in the group (1/3 of IGRA-positives) that clustered away. Gene expression patterns in the blood of IGRA-positive individuals emerging during the course of PT, which reflect Mtb viability, could have major implications in the identification of risk of progression, treatment stratification and biomarker development

    The UK ME/CFS Biobank for biomedical research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Multiple Sclerosis.

    Get PDF
    The UK ME/CFS Biobank was launched in August 2011 following extensive consultation with professionals and patient representatives. The bioresource aims to enhance research on myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), related to pathophysiology, biomarkers and therapeutic approaches. The cohort includes 18-60 year olds, encompassing 284 clinically-confirmed ME/CFS cases, 60 neurologist-diagnosed multiple sclerosis (MS) cases, and 135 healthy individuals. The Biobank contains blood samples, aliquoted into serum, plasma, peripheral blood mononuclear cells (PBMC), red blood cells/granulocyte pellet, whole blood, and RNA (totalling 29,863 aliquots). Extensive dataset (700 clinical and socio-demographic variables/participant) enables comprehensive phenotyping. Potential reuse is conditional to ethical approval

    Salivary DNA loads for human herpesviruses 6 and 7 are correlated with disease phenotype in myalgic encephalomyelitis/chronic fatigue syndrome

    Get PDF
    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex chronic condition affecting multiple body systems, with unknown cause, unclear pathogenesis mechanisms, and fluctuating symptoms which may lead to severe debilitation. It is frequently reported to have been triggered by an infection, but there are no clear differences in exposure to, or seroprevalence of, any particular viruses between people with ME/CFS and healthy individuals. However, herpes viruses have been repeatedly hypothesized to underlie the chronic relapsing/remitting form of MS/CFS due to their persistence in a latent form with periodic reactivation. It is possible that ME/CFS is associated with herpes virus reactivation, which has not been detectable previously due to insufficiently sensitive testing methods. Saliva samples were collected from 30 people living with ME/CFS at monthly intervals for 6 months and at times when they experienced symptom exacerbation, as well as from 14 healthy control individuals. The viral DNA load of the nine humanherpes viruses was determined by digital droplet PCR. Symptoms were assessed by questionnaire at each time point. Human herpesvirus (HHV) 6B, HHV-7, herpes simplex virus 1 and Epstein-Barr virus were detectable within the saliva samples, with higher HHV-6B and HHV-7 viral loads detected in people with ME/CFS than in healthy controls. Participants with ME/CFS could be broadly separated into two groups: one group displayed fluctuating patterns of herpesviruses detectable across the 6 months while the second group displayed more stable viral presentation. In the first group, there was positive correlation between HHV-6B and HHV-7 viral load and severity of symptom scores, including pain, neurocognition, and autonomic dysfunction. The results indicate that fluctuating viral DNA load correlates with ME/CFS symptoms: this is in accordance with the hypothesis that pathogenesis is related to herpesvirus reactivation state, and this should be formally tested. Herpesvirus reactivation might be a cause or consequence of dysregulated immune function seen in ME/CFS. The sampling strategy and molecular tools developed here permit such large-scale epidemiological investigations

    Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects.

    Get PDF
    BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS: We investigated in vitro and in vivo effects of metformin in humans. RESULTS: Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1β but increased phagocytosis activity and reactive oxygen species production. CONCLUSION: Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis

    Evidence of Clinical Pathology Abnormalities in People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) from an Analytic Cross-Sectional Study.

    Get PDF
    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease presenting with extreme fatigue, post-exertional malaise, and other symptoms. In the absence of a diagnostic biomarker, ME/CFS is diagnosed clinically, although laboratory tests are routinely used to exclude alternative diagnoses. In this analytical cross-sectional study, we aimed to explore potential haematological and biochemical markers for ME/CFS, and disease severity. We reviewed laboratory test results from 272 people with ME/CFS and 136 healthy controls participating in the UK ME/CFS Biobank (UKMEB). After corrections for multiple comparisons, most results were within the normal range, but people with severe ME/CFS presented with lower median values (p < 0.001) of serum creatine kinase (CK; median = 54 U/L), compared to healthy controls (HCs; median = 101.5 U/L) and non-severe ME/CFS (median = 84 U/L). The differences in CK concentrations persisted after adjusting for sex, age, body mass index, muscle mass, disease duration, and activity levels (odds ratio (OR) for being a severe case = 0.05 (95% confidence interval (CI) = 0.02-0.15) compared to controls, and OR = 0.16 (95% CI = 0.07-0.40), compared to mild cases). This is the first report that serum CK concentrations are markedly reduced in severe ME/CFS, and these results suggest that serum CK merits further investigation as a biomarker for severe ME/CFS
    • …
    corecore