13 research outputs found

    Romboutsia hominis sp nov., the first human gut-derived representative of the genus Romboutsia, isolated from ileostoma effluent

    Get PDF
    A Gram-stain-positive, motile, rod-shaped, obligately anaerobic bacterium, designated FRIFIT, was isolated from human ileostoma effluent and characterized. On the basis of 16S rRNA gene sequence similarity, strain FRIFIT was most closely related to the species Romboutsia ilealis CRIBT (97.7 %), Romboutsia lituseburensis DSM 797(T) (97.6 %) and Romboutsia sedimentorum LAM201(T) (96.6 %). The level of DNA-DNA relatedness between strain FRIFIT and R. ilealis CRIBT was 13.9 +/- 3.3% based on DNA-DNA hybridization. Whole genome sequence-based average nucleotide identity between strain FRIFIT and closely related Romboutsia strains ranged from 78.4-79.1 %. The genomic DNA G+C content of strain FRIFIT was 27.8 mol%. The major cellular fatty acids of strain FRIFI T were saturated and unsaturated straight-chain C12-C19 fatty acids as well as cyclopropane fatty acids, with C-16:0 being the predominant fatty acid. The polar lipid profile comprised five phospholipids and six glycolipids. These results, together with differences in phenotypic features, support the proposal that strain FRIFIT represents a novel species within the genus Romboutsia, for which the name Romboutsia hominis sp. nov. is proposed. The type strain is FRIFIT (=DSM 28814(T) = KCTC 15553(T)).Peer reviewe

    Intestinal microbiota in human health and disease: the impact of probiotics

    Get PDF
    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis

    The cellular lipids of Romboutsia

    No full text
    We have examined the lipids of three isolates, Romboutsia lituseburensis, Romboutsia ilealis, and Romboutsia sp. strain FRIFI, of the newly described genus Romboutsia by two-dimensional thin-layer chromatography (2D-TLC) and by liquid chromatography/mass spectrometry (LC/MS). We have found three phospholipids, phosphatidylglycerol (PG), cardiolipin and phosphatidic acid in all three species. A fourth phospholipid, lysyl-PG, was found in R. lituseburensis and strain FRIFI. Polyprenyl-phosphates were identified in the lipid extracts of all three species. Three glycolipids, mono-, di- and tri-hexosyldiacylglycerol, were common to all three species. An additional glycolipid, tetrahexosyl-diacylglycerol was identified in strain FRIFI. Acylated trihexosyldiacylglycerol and acyl-tetrahexosydiacylglycerol were also found in R. ilealis and strain FRIFI. Remarkably, no alk-1-enyl ether lipids (plasmalogens) were present in Romboutsia as distinct from bacteria of the related genus Clostridium in which these ether lipids are common. We have compared the lipidome of Romboutsia with that recently described for Clostridium difficile, which has plasmalogens, no lysyl-PG, and no tetrahexosyl-diacylglycerol. According to 16S rRNA gene sequencing, Romboutsia spp. and C. difficile are closely related (> 95% sequence identity)

    Microbiome-based stratification to guide dietary interventions to improve human health

    No full text
    Diverse evidence has suggested that the gut microbiome is closely associated with overall human health. Modulation of the gut microbiome through nutritional intervention is recognized as a robust and attainable strategy to prevent disorders/diseases and improve human health. However, universal dietary recommendations demonstrated to have different, sometimes even opposite, effects due to the considerable inter-individual variability between subjects, especially in the gut microbiome. Hence, implementation of personalized nutrition or other treatment strategies have been suggested to tackle the individuality problem. A first step into this direction includes the stratification of subjects into specific groups based on their gut microbiome. The gut microbiome could serve as a pool of potential biomarkers for distinguishing “responders” and “non-responders” to specific treatments, which subsequently can be used to classify subjects with ambition to increase treatment efficacy. In this review, we explain the need for human gut microbiome stratification, introduce the concepts and show with specific examples potential options of microbiome-based stratifications. Finally, we propose a strategy for how microbiome-based stratification can be introduced to obtain improvements in dietary efficacy that can be implemented in real-life settings.</p

    Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine

    Get PDF
    Background. The microbiota in the small intestine relies on their capacity to rapidly import and ferment available carbohydrates to survive in a complex and highly competitive ecosystem. Understanding how these communities function requires elucidating the role of its key players, the interactions among them and with their environment/host. Methods. The genome of the gut bacterium Romboutsia ilealis CRIBT was sequenced with multiple technologies (Illumina paired-end, mate-pair and PacBio). The transcriptome was sequenced (Illumina HiSeq) after growth on three different carbohydrate sources, and short chain fatty acids were measured via HPLC. Results. We present the complete genome of Romboutsia ilealis CRIBT, a natural inhabitant and key player of the small intestine of rats. R. ilealis CRIBT possesses a circular chromosome of 2,581,778 bp and a plasmid of 6,145 bp, carrying 2,351 and eight predicted protein coding sequences, respectively. Analysis of the genome revealed limited capacity to synthesize amino acids and vitamins, whereas multiple and partially redundant pathways for the utilization of different relatively simple carbohydrates are present. Transcriptome analysis allowed identification of the key components in the degradation of glucose, L-fucose and fructo-oligosaccharides. Discussion. This revealed that R. ilealis CRIBT is adapted to a nutrient-rich environment where carbohydrates, amino acids and vitamins are abundantly available.Peer reviewe

    Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: A metagenomic study

    No full text
    The gut microbiota composition of elderly hospitalized patients with Clostridium difficile infection (CDI) exposed to previous antibiotic treatment is still poorly investigated. The aim of this study was to compare the microbiota composition by means of 16S rRNA microbial profiling among three groups of hospitalized elderly patients (age ≥ 65) under standard diet including 25 CDI-positive (CDI group), 29 CDI-negative exposed to antibiotic treatment (AB+ group) and 30 CDI-negative subjects not on antibiotic treatment (ABâ group). The functional properties of the gut microbiomes of CDI-positive vs CDI-negative subjects were also assessed by shotgun metagenomics. A significantly lower microbial diversity was detected in CDI samples, whose microbiomes clustered separately from CDI-negative specimens. CDI was associated with a significant under-representation of gut commensals with putative protective functionalities, including Bacteroides, Alistipes, Lachnospira and Barnesiella, and over-representation of opportunistic pathogens. These findings were confirmed by functional shotgun metagenomics analyses, including an in-depth profiling of the Peptostreptococcaceae family. In CDI-negative patients, antibiotic treatment was associated with significant depletion of few commensals like Alistipes, but not with a reduction in species richness. A better understanding of the correlations between CDI and the microbiota in high-risk elderly subjects may contribute to identify therapeutic targets for CDI

    Glycine 236 in the lower hinge region of human igg1 differentiates fcγr from complement effector function

    No full text
    Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR
    corecore