193 research outputs found
On the convergence of generalized hill climbing algorithms
AbstractGeneralized hill climbing (GHC) algorithms provide a general local search strategy to address intractable discrete optimization problems. GHC algorithms include as special cases stochastic local search algorithms such as simulated annealing and the noising method, among others. In this paper, a proof of convergence of GHC algorithms is presented, that relaxes the sufficient conditions for the most general convergence proof for stochastic local search algorithms in the literature. Note that classical convergence proofs for stochastic local search algorithms require either that an exponential distribution be used to model the acceptance of candidate solutions along a search trajectory, or that the Markov chain model of the algorithm must be reversible. The proof in this paper removes these limitations, by introducing a new path concept between global and local optima. Convergence is based on the asymptotic behavior of path probabilities between local and global optima. Examples are given to illustrate the convergence conditions. Implications of this result are also discussed
Topological Black Holes in Gauss-Bonnet Gravity with conformally invariant Maxwell source
In this paper, we present a class of rotating solutions in Gauss--Bonnet
gravity in the presence of cosmological constant and conformally invariant
Maxwell field and study the effects of the nonlinearity of the Maxwell source
on the properties of the spacetimes. These solutions may be interpret as black
brane solutions with inner and outer event horizons provide that the mass
parameter is greater than an extremal value , an extreme black
brane if and a naked singularity otherwise. We investigate the
conserved and thermodynamics quantities for asymptotically flat and
asymptotically with flat horizon. We also show that the conserved and
thermodynamic quantities of these solutions satisfy the first law of
thermodynamics.Comment: 17 pages, 4 figures, some references adde
Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity
In this paper, we study slowly rotating black hole solutions in Lovelock
gravity (n=3). These exact slowly rotating black hole solutions are obtained in
uncharged and charged cases, respectively. Up to the linear order of the
rotating parameter a, the mass, Hawking temperature and entropy of the
uncharged black holes get no corrections from rotation. In charged case, we
compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is
shown that the gyromagnetic ratio keeps invariant after introducing the
Gauss-Bonnet and third order Lovelock interactions.Comment: 14 pages, no figur
A model for cascading failures in complex networks
Large but rare cascades triggered by small initial shocks are present in most
of the infrastructure networks. Here we present a simple model for cascading
failures based on the dynamical redistribution of the flow on the network. We
show that the breakdown of a single node is sufficient to collapse the
efficiency of the entire system if the node is among the ones with largest
load. This is particularly important for real-world networks with an highly
hetereogeneous distribution of loads as the Internet and electrical power
grids.Comment: 4 pages, 4 figure
Feasibility and Acceptability of Maternal Choline Supplementation in Heavy Drinking Pregnant Women: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Background: Choline, an essential nutrient, serves as a methyl-group donor for DNA methylation and is a constituent of the neurotransmitter acetylcholine and a precursor to major components of cell membranes. Findings from animal studies suggest that choline supplementation during pregnancy can mitigate adverse effects of prenatal alcohol exposure on growth and neurocognitive function. We conducted a randomized, double-blind exploratory trial to examine feasibility and acceptability of a choline supplementation intervention during pregnancy. Methods: Seventy heavy drinkers, recruited in mid-pregnancy, were randomly assigned to receive a daily oral dose of 2 g of choline or a placebo from time of enrollment until delivery. Each dose consisted of an individually wrapped packet of powder that, when mixed with water, produced a sweet tasting grape-flavored drink. Adherence was assessed by collecting used and unused drink packets on a monthly basis and tabulating the number used. Side effects were assessed in monthly interviews. Blood samples obtained at enrollment and at 4 and 12 weeks after randomization were assayed for plasma choline concentration. Results: Adherence was good-to-excellent (median doses taken = 74.0%; interquartile range = 53.9 to 88.7%) and was not related to a range of sociodemographic characteristics or to alcohol consumption ascertained using a timeline follow-back interview. By 4 weeks, plasma choline concentrations were significantly higher in the choline supplementation than the placebo arm, and this group difference continued to be evident at 12 weeks. The only side effect was a small increase in nausea/dyspepsia. No effects were seen for diarrhea, vomiting, muscle stiffness, blood pressure, or body odor changes. Conclusions: This study demonstrated that a choline supplementation program with very heavy drinkers during pregnancy is feasible even among highly disadvantaged, poorly educated women. The broad acceptability of this intervention is indicated by our finding that adherence was not related to maternal education, intellectual function, depression, nutritional status, or alcohol use
Thermodynamics of Rotating Black Branes in Gauss-Bonnet-nonlinear Maxwell Gravity
We consider the Gauss-Bonnet gravity in the presence of a new class of
nonlinear electromagnetic field, namely, power Maxwell invariant. By use of a
suitable transformation, we obtain a class of real rotating solutions with
rotation parameters and investigate some properties of the solutions such as
existence of singularity(ies) and asymptotic behavior of them. Also, we
calculate the finite action, thermodynamic and conserved quantities of the
solutions and using the the Smarr-type formula to check the first law of
thermodynamics.Comment: 15 page
A Study of Phase Transition in Black Hole Thermodynamics
This paper deals with five-dimensional black hole solutions in (a)
Einstein-Maxwell-Gauss-Bonnet theory with a cosmological constant and
(b)Einstein-Yang-Mills-Gauss-Bonnet theory for spherically symmetric space
time. In both the cases the possibility of phase transition is examined and it
is analyzed whether the phase transition is a Hawking-Page type phase
transition or not.Comment: 16 figure
Cascade-based attacks on complex networks
We live in a modern world supported by large, complex networks. Examples
range from financial markets to communication and transportation systems. In
many realistic situations the flow of physical quantities in the network, as
characterized by the loads on nodes, is important. We show that for such
networks where loads can redistribute among the nodes, intentional attacks can
lead to a cascade of overload failures, which can in turn cause the entire or a
substantial part of the network to collapse. This is relevant for real-world
networks that possess a highly heterogeneous distribution of loads, such as the
Internet and power grids. We demonstrate that the heterogeneity of these
networks makes them particularly vulnerable to attacks in that a large-scale
cascade may be triggered by disabling a single key node. This brings obvious
concerns on the security of such systems.Comment: 4 pages, 4 figures, Revte
Efficacy of Maternal Choline Supplementation During Pregnancy in Mitigating Adverse Effects of Prenatal Alcohol Exposure on Growth and Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Background: We recently demonstrated the acceptability and feasibility of a randomized, double-blind choline supplementation intervention for heavy drinking women during pregnancy. In this study, we report our results relating to the efficacy of this intervention in mitigating adverse effects of prenatal alcohol exposure (PAE) on infant growth and cognitive function. Methods: Sixty-nine Cape Coloured (mixed ancestry) heavy drinkers in Cape Town, South Africa, recruited in mid-pregnancy, were randomly assigned to receive a daily oral dose of either 2 g of choline or placebo from time of enrollment until delivery. Each dose consisted of an individually wrapped packet of powder that, when mixed with water, produced a sweet tasting grape-flavored drink. The primary outcome, eyeblink conditioning (EBC), was assessed at 6.5 months. Somatic growth was measured at birth, 6.5, and 12 months, recognition memory and processing speed on the Fagan Test of Infant Intelligence, at 6.5 and 12 months. Results: Infants born to choline-treated mothers were more likely to meet criterion for conditioning on EBC than the placebo group. Moreover, within the choline arm, degree of maternal adherence to the supplementation protocol strongly predicted EBC performance. Both groups were small at birth, but choline-treated infants showed considerable catch-up growth in weight and head circumference at 6.5 and 12 months. At 12 months, the infants in the choline treatment arm had higher novelty preference scores, indicating better visual recognition memory. Conclusions: This exploratory study is the first to provide evidence that a high dose of choline administered early in pregnancy can mitigate adverse effects of heavy PAE on EBC, postnatal growth, and cognition in human infants. These findings are consistent with studies of alcohol-exposed animals that have demonstrated beneficial effects of choline supplementation on classical conditioning, learning, and memory
Generalised second law of thermodynamics for interacting dark energy in the DGP brane world
In this paper, we investigate the validity of the generalized second law of
thermodynamics (GSLT) in the DGP brane world when universe is filled with
interacting two fluid system: one in the form of cold dark matter and other is
holographic dark energy. The boundary of the universe is assumed to be enclosed
by the dynamical apparent horizon or the event horizon. The universe is chosen
to be homogeneous and isotropic FRW model and the validity of the first law has
been assumed here
- …