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We consider the Gauss–Bonnet gravity in the presence of a new class of nonlinear electromagnetic field,
namely, power Maxwell invariant. By use of a suitable transformation, we obtain a class of real rotating
solutions with k rotation parameters and investigate some properties of the solutions such as existence
of singularity(ies) and asymptotic behavior of them. Also, we calculate the finite action, thermodynamic
and conserved quantities of the solutions and using the Smarr-type formula to check the first law of
thermodynamics.

© 2010 Elsevier B.V.

In recent years, one of the great developments in general relativity was the discovery of a close relationship between black hole
mechanics and the ordinary laws of thermodynamics. The existence of this close relationship between these laws may provide us with
a key to our understanding of the fundamental nature of black holes as well as to our understanding of some aspects of the nature of
thermodynamics itself. Also, it is notable that the black hole is an object that is considered in classical and quantum point of view and so
one hopes to gain insight into the nature of quantum gravity by studying the thermodynamics of black holes.

The laws of black hole mechanics are analogous to the laws of thermodynamics. The quantities of particular interest in gravitational
thermodynamics are the physical entropy S and the temperature β−1, where these quantities are respectively proportional to the area
and surface gravity of the event horizon [1]. Other black hole properties, such as energy, angular momentum and conserved charges can
also be given a thermodynamic interpretation. In finding the thermodynamic quantities, one should use the quasilocal definitions for the
thermodynamic variables. By quasilocal, we mean that the quantity is constructed from information that exists on the boundary of a
gravitating system alone. Just as the Gauss law, such quasilocal quantities will yield information about the spacetime contained within
the system boundary. One of the advantage of using such a quasilocal method is that the formalism does not depend on the particular
asymptotic behavior of the system, so one can accommodate a wide class of spacetimes with the same formalism.

In this Letter, we attempt to construct the rotating black brane solutions of Gauss–Bonnet gravity in the presence of a nonlinear
Maxwell field, namely, power Maxwell invariant, and investigate their thermodynamics properties. In what follows, at first, we present
some considerable works on higher derivative gravity as well as power Maxwell invariant theory.

On one hand, since the field equations of gravity are generally covariant and of second order derivatives in the metric tensor, one would
naively expect these equations to be derived from an action principle involving metric tensor and its first and second order derivatives [2],
analogous to the situation for many other field theories of physics. In recent years, there have been considerable works for understanding
the role of the higher curvature terms from various points of view, especially with regard to higher-dimensional black hole physics. For
example, thermodynamics and other properties of the static black hole solutions in Gauss–Bonnet gravity have been found by many
authors [3–9]. Also, the Taub–NUT/bolt solutions of higher derivative gravity and their thermodynamics properties have been constructed
[10–13]. Not long ago, M.H. Dehghani introduced two new classes of rotating solutions of second order Lovelock gravity and investigated
their thermodynamics [14,15].

On the other hand, in recent years there has been aroused interest about the solutions whose source is Maxwell invariant raised to
the power s, i.e., (F μν Fμν)s as the source of geometry in Einstein and higher derivative gravity [16]. This theory is considerably richer
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than that of the linear electromagnetic field and in the special case (s = 1) it can reduces to linear field. Also, it is valuable to find and
analyze the effects of exponent s on the behavior of the new solutions and the laws of black hole mechanics [17]. In addition, in higher-
dimensional gravity, for the special choice s = d/4, where d = dimension of the spacetime is a multiple of 4, it yields a traceless Maxwell’s
energy–momentum tensor which leads to conformal invariance [18]. In Ref. [19], higher-dimensional, direct analogues of the usual d = 4
Einstein–Yang–Mills gravity have been studied.

In the rest of the Letter, we give a brief definition of the field equations of Gauss–Bonnet gravity in the presence of nonlinear electro-
magnetic field and present a new class of rotating black brane solutions and investigate their properties.

Here we present the Gauss–Bonnet gravity, which contains the first three terms of Lovelock gravity in the presence of nonlinear
electromagnetic field. The action is

IG = − 1

16π

∫
M

dn+1x
√−g

{
R − 2Λ + αLGB + κ L(F )

} − 1

8π

∫
∂M

dnx
√−γ

{
K + 2α

(
J − 2Ĝab K ab)}, (1)

where R is the Ricci scalar, Λ is the cosmological constant, α is the Gauss–Bonnet coefficient with dimension (length)2 and LGB is the
Lagrangian of Gauss–Bonnet gravity

LGB = Rμνγ δ Rμνγ δ − 4Rμν Rμν + R2,

where Rμν and Rμνγ δ are Ricci and Riemann tensors of the manifold M, κ is a constant in which one can set it to avoid of negative
energy density and present well-defined solutions and L(F ) is the Lagrangian of power Maxwell invariant theory

L(F ) = −F s. (2)

In Eq. (2), F = F μν Fμν where Fμν = ∂μ Aν − ∂ν Aμ is electromagnetic tensor field and Aμ is the vector potential. In the limit s = 1,
L(F ) reduces to the standard Maxwell form L(F ) = −F . The second integral in Eq. (1) is a boundary term which is chosen such that the
variational principle is well defined [20]. In this term, γab is induced metric on the boundary ∂M, K is trace of extrinsic curvature K ab of
the boundary, Ĝab(γ ) is Einstein tensor calculated on the boundary, and J is trace of

Jab = 1

3

(
Kcd K cd Kab + 2K Kac K c

b − 2Kac K cd Kdb − K 2 Kab
)
. (3)

Varying the action (1) with respect to the metric tensor gμν and electromagnetic field Aμ , the equations of gravitation and electro-
magnetic fields are obtained as

Gμν + Λgμν − α

2

(
8Rρσ Rμρνσ − 4Rρσλ

μ Rνρσλ − 4R Rμν + 8RμλRλ
ν + gμν LGB

) = 2κ

(
sFμρ F ρ

ν F s−1 − 1

4
gμν F s

)
, (4)

∂μ

(√−g F μν F s−1) = 0, (5)

where Gμν is the Einstein tensor.
Eq. (4) does not contain the derivative of the curvatures and therefore the derivatives of the metric higher than two do not appear.

Thus, the Gauss–Bonnet gravity is a special case of higher derivative gravity. Hereafter we consider the metric of (n + 1)-dimensional
rotating spacetime with k rotation parameters in the form [21,22]

ds2 = − f (ρ)

(
Ξ dt −

k∑
i=1

ai dφi

)2

+ ρ2

l4

k∑
i=1

(
ai dt − Ξ l2 dφi

)2 + dρ2

f (ρ)
− ρ2

l2

k∑
i< j

(ai dφ j − a j dφi)
2 + ρ2 dX2, (6)

where Ξ =
√

1 + ∑k
i a2

i /l2 and dX2 is the Euclidean metric on the (n − 1 − k)-dimensional submanifold. The rotation group in (n + 1)

dimensions is SO(n) and therefore k � [n/2]. Using the gauge potential ansatz

Aμ = h(ρ)
(
Ξδ0

μ − δi
μai

)
(no sum on i) (7)

and solving Eq. (5), we obtain

h(ρ) =

⎧⎪⎨
⎪⎩

C, s = 0, 1
2 ,

C ln(ρ), s = n
2 ,

Cρ(2s−n)/2s−1, otherwise

(8)

where C is an integration constant which is related to the charge parameter. One may note that as s = 1, Aμ of Eq. (7) reduces to the
gauge potential of the linear Maxwell field [14] as it should be. To find the function f (ρ), one may use any components of Eq. (4). After
some calculations, one can show that the solution of field Eq. (4), can be written as

f (ρ) = 2ρ2

(n − 1)γ

(
1 −

√
1 + 2γ Λ

n
+ γ m

ρn
− κγ Γ (ρ)

)
, (9)

where
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Γ (ρ) =

⎧⎪⎪⎨
⎪⎪⎩

0, s = 0, 1
2 ,

2n/2(n − 1)Cn ln(ρ)
ρn , s = n

2 ,

(2s−1)2

2s−n

(−2C2ρ−2(n−1)/(2s−1)(2s−n)2

(2s−1)2

)s
, otherwise,

(10)

γ = 4α(n − 2)(n − 3)

(n − 1)
. (11)

The metric function f (ρ) for the uncharged solution (C = 0) is real in the whole range 0 � ρ < ∞ provided α � −n/(8γΛ), but for
charged solution it is real only in the range r0 � ρ < ∞ where r0 is the largest real root of the following equation

nrn
0 + γ

(
2Λrn

0 + nm − κnrn
0Γ0

) = 0, (12)

where Γ0 = Γ (ρ = r0). In order to restrict the spacetime to the region ρ � r0, we introduce a new radial coordinate r as

r =
√

ρ2 − r2
0 ⇒ dρ2 = r2

r2 + r2
0

dr2. (13)

With this new coordinate, the above metric (6) becomes

ds2 = − f (r)

(
Ξ dt −

k∑
i=1

ai dφi

)2

+ (r2 + r2
0)

l4

k∑
i=1

(
ai dt − Ξ l2 dφi

)2 − r2 + r2
0

l2

k∑
i< j

(ai dφ j − a j dφi)
2

+ r2 dr2

(r2 + r2
0) f (r)

+ (
r2 + r2

0

)
dX2, (14)

where now the functions h(ρ) and f (ρ) change to

h(r) =

⎧⎪⎨
⎪⎩

C, s = 0, 1
2 ,

1
2 C ln(r2 + r2

0), s = n
2 ,

C(r2 + r2
0)(2s−n)/[2(2s−1)], otherwise,

(15)

f (r) = 2(r2 + r2
0)

(n − 1)γ

(
1 −

√
1 + 2γ Λ

n
+ γ m

(r2 + r2
0)n/2

− κγ Γ (r)

)
, (16)

Γ (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s = 0, 1
2 ,

2n/2(n − 1)Cn ln(r2+r2
0)

2(r2+r2
0)n/2 , s = n

2 ,

(2s−1)2

2s−n

( −2C2(2s−n)2

(2s−1)2(r2+r2
0)(n−1)/(2s−1)

)s
, otherwise.

(17)

These solutions reduce to the solutions presented in Ref. [14] as s = 1, to those of Ref. [23] as α vanishes and to the solutions given in
Ref. [24] as α goes to zero and s = 1, simultaneously.

1. Properties of the solutions

In order to study the general structure of these spacetime, we first look for the essential singularity(ies). After some algebraic manipu-
lation, one can show that for the rotating metric (14), the Kretschmann scalar is

Rμνρσ Rμνρσ = (r2 + r2
0)2 f ′′2(r)

r4
− 2r2

0(r2 + r2
0) f ′′(r) f ′(r)
r5

+ [2(n − 1)r4 + r4
0)] f ′2(r)

r6
+ 2(n − 1)(n − 2) f 2(r)

(r2 + r2
0)2

, (18)

where prime and double prime are first and second derivative with respect to r, respectively. It is straightforward to show that the
Kretschmann scalar (18) with metric function (16) diverges at r = 0 and is finite for r �= 0. Also one can show that other curvature
invariants (such as Ricci square, Weyl square and so on) diverges at r = 0. Thus, there is a curvature singularity located at r = 0.

In Einstein gravity coupled to power Maxwell invariant [23], it is shown that for s > n/2 and s < 0, the singularity at r = 0 for the
solutions with non-negative mass is spacelike, and therefore it is unavoidable. These solutions with positive mass present black branes
with one horizon. But here, in Gauss–Bonnet gravity, we have a extra parameter, α, and one can set the parameters of the solutions to
have timelike singularity for all values of nonlinear parameter.

Second, we investigate the effects of the nonlinearity on the asymptotic behavior of the solutions. It is worthwhile to mention that for
0 < s < 1

2 , the asymptotic dominant term of Eq. (16) is charge term, Γ (r), and the presented solutions are not asymptotically AdS, but for
the cases s < 0 or s > 1

2 (include of s = n
2 ), the asymptotic behavior of rotating Einstein–nonlinear Maxwell field solutions are the same

as linear AdS case. It is easy to show that the electromagnetic field is zero for the cases s = 0,1/2, and the metric function (16) does not
possess a charge term (Γ (r) = 0) and it corresponds to uncharged asymptotically AdS one.

The metric (14) has two types of Killing and event horizons. The Killing horizon is a null surface whose null generators are tangent to
a Killing field. It is proved that a stationary black hole event horizon should be a Killing horizon in the four-dimensional Einstein gravity
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[25]. This proof cannot obviously be generalized to higher order gravity, but the result is true for all the known static solutions. Although
our solution is not static, the Killing vector,

χ = ∂t +
k∑
i

Ωi∂φi , (19)

is the null generator of the event horizon, where Ωi is the ith component of angular velocity of the outer horizon. The angular velocities
Ωi ’s may be obtained by analytic continuation of the metric. Setting ai → iai yields the Euclidean section of (14), whose regularity at
r = r+ (requiring the absence of conical singularity at the horizon in the Euclidean sector of the black brane solutions) requires that we
should identify φi ∼ φi + βΩi . One obtains

Ωi = ai

Ξ l2
. (20)

The temperature may be obtained through the use of regularity at r = r+ or definition of surface gravity,

T+= β−1 = 1

2π

√
−1

2
(∇μχν)

(∇μχν
)
, (21)

where χ is the Killing vector (19). It is straightforward to show that

T+= f ′(r+)

4πΞ

√
1 + r2

0

r2+
= −2Λ + (n − 1)κΥ

4πΞ(n − 1)

√
r2+ + r2

0, (22)

Υ =

⎧⎪⎪⎨
⎪⎪⎩

0, s = 0, 1
2 ,

2n/2Cn(r2+ + r2
0)−n/2, s = n

2 ,

(2s−1)
n−1

( −2C2(2s−n)2

(2s−1)2(r2++r2
0)(n−1)/(2s−1)

)s
, otherwise.

(23)

Using the fact that the temperature of the extreme black brane is zero, it is easy to show that the condition for having an extreme black
hole is that the mass parameter is equal to mext, where mext is given as

mext = ζ − 8Λ(r2 + r2
0)n/2

n(n − 4)
+ (r2 + r2

0)n/2[√(n − 1)(n − 2)ξ − (n − 1)(n − 2)]
α(n − 2)(n − 3)(n − 4)2

, (24)

where

χ =
⎧⎨
⎩

2n/2κ(n − 1)Cn(r2 + r2
0)−n/2, s = n

2 ,

(2s − 1)κ
( −2C2(n−2s)2

(2s−1)2(r2+r2
0)(n−1)/(2s−1)

)s
, otherwise,

ζ =

⎧⎪⎨
⎪⎩

2n/2κ(n−1)Cn[(n−4) ln(r2+r2
0)−2]

2(n−4)
, s = n

2 ,

− 2κ(2s−1)[s(n−5)+2](r2+r2
0)n/2

(n−4)(n−2s)

( −2C2(n−2s)2

(2s−1)2(r2+r2
0)(n−1)/(2s−1)

)s
, otherwise,

ξ = (n − 1)(n − 2) + 8αΛ(n − 3)(n − 4) + 4(n − 3)(n − 4)αχ.

The metric of Eqs. (14), (16) and (17) presents a black brane solution with inner and outer horizons, provided the mass parameter m is
greater than mext, an extreme black brane for m = mext and a naked singularity otherwise.

Here we, first, calculate the thermodynamic and conserved quantities of the black brane. Second, we obtain a Smarr-type formula
for the mass as a function of the entropy, the angular momentum and the charge of the solution and finally check the first law of
thermodynamics.

Denoting the volume of the hypersurface at r = constant and t = constant by Vn−1, the charge of the black brane, Q , can be found by
calculating the flux of the electromagnetic field at infinity, yielding

Q =
⎧⎨
⎩

Vn−1(−1)(n+2)/22n/2ΞCn−1

8π , s = n
2 ,

Vn−1(−1)s+12sΞ

8π

(
(2s−n)C
(2s−1)

)2s−1
, otherwise.

(25)

The electric potential Φ , measured at infinity with respect to the horizon, is defined by [26]

Φ = Aμχμ
∣∣
r→∞−Aμχμ

∣∣
r=r+ , (26)

where χ is the null generator of the horizon given by Eq. (19). One finds

Φ = −C

Ξ

⎧⎪⎨
⎪⎩

1, s = 0, 1
2 ,

1
2 ln(r2+ + r2

0), s = n
2 ,

(r2 + r2)(2s−n)/[2(2s−1)], otherwise.

(27)
+ 0
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Black hole entropy typically satisfies the so-called area law, which states that the entropy of a black hole equals one-quarter of the area
of its horizon. This near universal law applies to almost all kinds of black objects in Einstein gravity [27]. However in higher derivative
gravity the area law is not satisfied in general [28]. For asymptotically flat black hole solutions of Lovelock gravity, the entropy may be
written as [29]

S = 1

4

[(d−1)/2]∑
k=1

kαk

∫
dn−1x

√
g̃L̃k−1, (28)

where the integration is done on the (n − 1)-dimensional spacelike hypersurface of Killing horizon, g̃μν is the induced metric on it, g̃

is the determinant of g̃μν and L̃k is the kth order Lovelock Lagrangian of g̃μν . The asymptotic behavior of the black branes we are
considering is not flat, and therefore we calculate the entropy through the use of Gibbs–Duhem relation

S = 1

T
(M − Γi Ci) − I, (29)

where I is the finite total action evaluated on the classical solution, and Ci and Γi are the conserved charges and their associate chemical
potentials respectively.

In general the action IG , is divergent when evaluated on the solutions, as is the Hamiltonian and other associated conserved quantities.
A systematic method of dealing with this divergence in Einstein gravity is through the use of the counterterms method inspired by the
anti-de Sitter/conformal field theory (AdS/CFT) correspondence [30]. This conjecture, which relates the low energy limit of string theory in
asymptotically anti-de Sitter spacetime and the quantum field theory living on the boundary of it, have attracted a great deal of attention
in recent years. This equivalence between the two formulations means that, at least in principle, one can obtain complete information on
one side of the duality by performing computation on the other side. A dictionary translating between different quantities in the bulk
gravity theory and their counterparts on the boundary has emerged, including the partition functions of both theories. This conjecture is
now a fundamental concept that furnishes a means for calculating the action and conserved quantities intrinsically without reliance on
any reference spacetime [31]. It has also been applied to the case of black holes with constant negative or zero curvature horizons [24]
and rotating higher genus black branes [32]. Although the AdS/CFT correspondence applies for the case of a specially infinite boundary, it
was also employed for the computation of the conserved and thermodynamic quantities in the case of a finite boundary [33].

All of the work mention in the last paragraph was limited to Einstein gravity. Although the counterterms in Lovelock gravity should be
a scalar constructed from Riemann tensor as in the case of Einstein gravity, they are not known for the case of Lovelock gravity till now.
But, for the solutions with flat boundary, R̂abcd(γ ) = 0, there exists only one boundary counterterm

Ict = − 1

8π

∫
∂M

dnx
√−γ

(
n − 1

leff

)
, (30)

where leff is a scale length factor that depends on l and α, that must reduce to l as α goes to zero. One may note that this counterterm
has exactly the same form as the counterterm in Einstein gravity for a spacetime with zero curvature boundary in which l is replaced by
leff.

Using Eqs. (1) and (30), the finite action can be calculated as

I = Vn−1Ξ l2(r2+ + r2
0)(n−1)/2

4

(
Π − 1

l2

)
, (31)

Π =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(n−1)m
n (r2+ + r2

0)−n/2, s = 0, 1
2 ,

(n−1)m+(−1)(n+2)/22n/2Cn ln(r2++r2
0)

n−2n/2l2κCn , s = n
2 ,

(n−1)2(2s−1)2s−1m(r2++r2
0)(n−2s)/[2(2s−1)]−(−1)s2s+1(n−1)(2s−n)2s−1C2s

n(n−1)(2s−1)2s−1−(−1)s2sl2κ(2s−n)2sC2s , otherwise,

(32)

Having the total finite action, IG + Ict, one can use the Brown–York definition of stress–energy tensor [34] to construct a divergence-free
stress–energy tensor. For the case of manifolds with zero curvature boundary, the finite stress–energy tensor is [35,36]

T ab = 1

8π

{(
K ab − Kγ ab) + 2α

(
3 J ab − Jγ ab) −

(
n − 1

leff

)
γ ab

}
. (33)

One may note that when α goes to zero, the stress–energy tensor (33) reduces to that of Einstein gravity. To compute the conserved
charges of the spacetime, we choose a spacelike surface B in ∂M with metric σi j , and write the boundary metric in ADM form

γab dxa dxa = −N2 dt2 + σi j
(
dϕ i + V i dt

)(
dϕ j + V j dt

)
, (34)

where the coordinates ϕ i are the angular variables parameterizing the hypersurface of constant r around the origin, and N and V i are
the lapse and shift functions respectively. When there is a Killing vector field ξ on the boundary, then the quasilocal conserved quantities
associated with the stress–energy tensors of Eq. (33) can be written as

Q(ξ) =
∫

dn−1ϕ
√

σ Tabnaξb, (35)
B
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where σ is the determinant of the metric σi j , and na is the timelike unit normal vector to the boundary B. For boundaries with timelike
(ξ = ∂/∂t) and rotational (ς = ∂/∂ϕ) Killing vector fields, one obtains the quasilocal mass and angular momentum

M =
∫

B

dn−1ϕ
√

σ Tabnaξb, (36)

J =
∫

B

dn−1ϕ
√

σ Tabnaςb, (37)

provided the surface B contains the orbits of ς . These quantities are, respectively, the conserved mass and angular momentum of the
system enclosed by the boundary B. Using Eqs. (36) and (37), the mass and angular momenta of the solution are calculated as

M = Vn−1

16π
m

(
nΞ2 − 1

)
, (38)

J i = Vn−1

16π
nΞmai . (39)

Now using Gibbs–Duhem relation (29) and Eqs. (25)–(39) and (31), one obtains

S = Vn−1Ξ

4

(
r2+ + r2

0

)(n−1)/2
. (40)

This shows that the entropy obeys the area law for our case where the horizon curvature is zero.
Calculating all the thermodynamic and conserved quantities of the black brane solutions, we now check the first law of thermodynam-

ics for our solutions. We obtain the mass as a function of the extensive quantities S , J, and Q . Using the expression for the mass, the
angular momenta, the charge and the entropy given in Eqs. (25), (38), (39), (40) and the fact that f (r+) = 0, one can obtain a Smarr-type
formula as

M(S, J, Q ) = (nZ − 1) J

nl
√

Z(Z − 1)
, (41)

where J = |J| =
√∑k

i J 2
i and Z = Ξ2 is the positive real root of the following equation

2Λ + 16π J

l Z
√

Z 2 − 1

(
Z

4S

)n/(n−1)

− κnΨ = 0, Ψ =

⎧⎪⎪⎨
⎪⎪⎩

0, s = 0, 1
2 ,

2n/[2(n−1)][ (−1)(n+2)/2π Q
S

]n/(n−1)
ln( 4S

Z ), s = n
2 ,

(−1)s2s/(2s−1)(2s−1)2

2s−n

(
(−1)s+1π Q

S

)2s/(2s−1)
, otherwise.

(42)

One may then regard the parameters S , J i ’s, and Q as a complete set of extensive parameters for the mass M(S, J, Q ) and define the
intensive parameters conjugate to them. These quantities are the temperature, the angular velocities, and the electric potential

T =
(

∂M

∂ S

)
J ,Q

, Ωi =
(

∂M

∂ J i

)
S,Q

, Φ =
(

∂M

∂ Q

)
S, J

. (43)

It is a matter of straightforward calculation to show that the intensive quantities calculated by Eq. (43) coincide with Eqs. (20), (22), and
(26). Thus, these quantities satisfy the first law of thermodynamics

dM = T dS +
k∑

i=1

Ωi d J i + Φ dQ . (44)

2. Closing remarks

In this Letter, we presented a class of rotating solutions in Gauss–Bonnet gravity in the presence of a nonlinear electromagnetic
field. These solutions are not real for the whole spacetime and so, by a suitable transformation, we presented the real solutions. We
found that these solutions reduce to the solutions of Gauss–Bonnet–Maxwell gravity as s = 1, and reduce to those of Einstein–power
Maxwell invariant gravity as α vanishes. Then we studied the kind of singularity and found that, in contrast to the Einstein–power
Maxwell invariant gravity, for all values of nonlinear parameter, we can always choose the suitable parameters to have timelike singularity.
Also, we found that as in the case of rotating black brane solutions of Einstein-power Maxwell invariant gravity, for 0 < s < 1

2 , the
asymptotic dominant term of metric function f (r) is charge term, and the presented solutions are not asymptotically AdS, but for the
cases s < 0 or s > 1

2 , the asymptotic behavior of rotating Einstein–nonlinear Maxwell field solutions are the same as linear AdS case. In the
other word, we found that the Gauss–Bonnet does not effect on the asymptotic behavior of the solutions. Then, we applied counterterm
method to the solutions with flat boundary at r = constant and t = constant, and calculated the finite action and their conserved and
thermodynamic quantities. The physical properties of the black brane such as the temperature, the angular velocity, the electric charge
and the potential have been computed. We found that the conserved quantities of the black brane do not depend on the Gauss–Bonnet
parameter α. Consequently, we obtained the entropy of the black brane through the use of Gibbs–Duhem relation and found that it obeys
the area law of entropy. Then, we obtained a Smarr-type formula for the mass as a function of the extensive parameters S , J and Q , and
calculated the intensive parameters T , Ω and Φ . We also showed that the conserved and thermodynamic quantities satisfy the first law
of thermodynamics.
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