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Abstract

Generalized hill climbing (GHC) algorithms provide a general local search strategy to address
intractable discrete optimization problems. GHC algorithms include as special cases stochastic
local search algorithms such as simulated annealing and the noising method, among others. In
this paper, a proof of convergence of GHC algorithms is presented, that relaxes the su1cient
conditions for the most general convergence proof for stochastic local search algorithms in the
literature. Note that classical convergence proofs for stochastic local search algorithms require
either that an exponential distribution be used to model the acceptance of candidate solutions
along a search trajectory, or that the Markov chain model of the algorithm must be reversible.
The proof in this paper removes these limitations, by introducing a new path concept between
global and local optima. Convergence is based on the asymptotic behavior of path probabilities
between local and global optima. Examples are given to illustrate the convergence conditions.
Implications of this result are also discussed. ? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Simulated annealing; Threshold accepting; Hill climbing algorithms; Discrete
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1. Introduction

Many discrete optimization (minimization) problems belong to a class of prob-
lems that are di1cult to solve (i.e., the class of NP-hard problems [8]). There are
no known polynomial-time algorithms that can solve any problem in this class. There-
fore, heuristic methods have been developed that e1ciently And near-optimal solutions.
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Sangiovanni-Vincentelli [16] separates these methods into two conceptual classes: a
class that computes the best solution constructively, starting from raw data, and a class
that iteratively improves upon an existing solution.

Iterative algorithms are speciAed by the rules for generating and accepting new
solutions, and by termination criteria. Local search [17] is a simple iterative algorithm
that uses the concepts of a neighborhood and an objective function. Given a current
solution, its neighborhood is the set of all solutions that can be generated by single
transformation of some aspect of it, while the objective function assesses the cost of
each solution. For example, the objective of the traveling salesman problem is to And a
Hamiltonian circuit among J nodes that minimizes the sum of the weights of the arcs
connecting the nodes. A current solution is a Hamiltonian circuit, and a neighborhood
can be deAned as the set of all Hamiltonian circuits that are produced by pair-wise
node exchanges in the current circuit. The objective function is the sum of the arc
weights of each circuit.

After a neighborhood and an objective function are deAned, local search proceeds as
follows: given a current solution, a candidate solution is selected from its neighbors.
If the candidate has a lesser objective function value than the current solution, then
the candidate becomes the new current solution; otherwise the candidate is rejected.
The process is repeated until no neighbor has a lesser objective function value than the
current solution. At this point, the algorithm has reached a local minimum with respect
to the neighborhood deAnition, and the algorithm is halted. The principal shortcoming
of local search is that the algorithm cannot guarantee that the local minimum is also
a global minimum.
Stochastic search algorithms are local search algorithms that probabilistically ac-

cept hill climbing solutions (e.g., solutions of higher objective function value than the
current solution), in the hope of escaping local optima, so that a global optimum can
eventually be reached. For example, simulated annealing [7,14], is based on the con-
cept that hill climbing transitions between solutions are probabilistically accepted by
comparing a deterministic function (of the increase in solution value and of a control
parameter) to a uniform (0,1) random variable. The noising method [4], randomly per-
turbs each solution and then performs local search, using the objective function values
of the perturbed data. The process is repeated, while the perturbations are gradually
reduced, allowing the original problem structure to reappear. Threshold accepting [6]
is a local search algorithm, with each candidate solution accepted as the new current
solution if the objective function value change is less than a speciAed threshold (typ-
ically deAned as a deterministic step function that approaches zero as the algorithm
progresses).

Johnson [12] presents a general acceptance probability model, termed generalized
hill climbing (GHC) algorithms. GHC algorithms include as special cases local search,
simulated annealing, the noising method, and threshold accepting. The principal con-
tribution of this paper is a convergence proof that relaxes the su1cient conditions
of the most general proof of convergence for stochastic local search
algorithms in the literature. Note that classical convergence proofs for stochastic local
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Fig. 1. The generalized hill climbing algorithm.

search algorithms require either that an exponential distribution be used to model the
acceptance of candidate solutions along a search trajectory, or that the Markov chain
model of the algorithm must be reversible. The proof in this paper removes these lim-
itations, by introducing a new path concept between global and local optima. Conver-
gence is based on the asymptotic behavior of path probabilities between local and global
optima.

The paper is organized as follows: in Section 2, notation is explained and the GHC
algorithm framework is deAned. Section 3 presents the proof of convergence for the
GHC algorithm. Section 4 presents some illustrative examples. Section 5 discusses
implications and provides concluding comments. An appendix contains all the proofs
of the results.

2. De�nitions and notation

DeAne a discrete optimization minimization problem as a two-tuple (�; c) where
1. � is a Anite space composed of (�; c) solutions,
2. c :� → R+ is an non-negative objective function.
DeAne a neighborhood function � :� → 2�, which provides connections between the
elements of �. DeAne �ij = cj − ci to be the change in objective function value be-
tween two distinct solutions i; j∈�. DeAne G ⊂ � to be the set of globally optimal
solutions, with objective function value copt =mini∈� {ci}. DeAne L ⊂ � \G to be the
set of locally (but not globally) optimal solutions (i.e., i∈L if �i;j¿ 0 for all i∈�\G
and j∈ �(i)). Finally, deAne H =� \ (L ∪ G) to be the set of all other solutions in
�.

A GHC algorithm is initialized with a solution i∈� having objective function value
ci. The total number of outer loop iterations K , the total number of inner loop iterations
M , the solution generation probabilities gi; j(k), non-negative random variables Rk(i; j),
and a stopping criterion must all be speciAed. The GHC algorithm is depicted in
pseudocode in Fig. 1.
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For i∈�; j∈ �(i), and all k, the one-step transition probability Pi;j(k) of accepting
the neighboring solution as the new current solution is expressed as

Pi;j(k)=




gi; j(k)Pr(Rk(i; j)¿�i;j) for all i∈�; j∈ �(i); j 	= i;

1−
∑

q∈�(i);
q �=i

Pi;q(k) j = i;

0 otherwise:

(1)

Note that Pr(Rk(i; j)¿�i;j) deAnes the solution acceptance probability. Moreover, the
generation probabilities gi; j(k) must be non-negative, and satisfy∑

j∈�(i)

gi; j(k)= 1: (2)

The GHC algorithm can be modeled as an inhomogeneous Markov chain, or as a
sequence of K homogeneous Markov chains, where each chain is of length M , and each
state is a solution in �. When certain conditions (as described in Section 3) are placed
on the transition matrix associated with each homogeneous Markov chain, then as M
approaches inAnity, each associated Markov chain approaches its unique equilibrium
distribution �(k). Additional conditions (also described in Section 3) on Rk(i; j) ensure
that as K approaches inAnity, the sequence of equilibrium distributions converges to
a form where all the probability mass is concentrated on the set of globally optimal
solutions.

GHC algorithms traverse the solution space � in search of a globally optimal so-
lution. To understand this process, the concept of a path between solutions must be
deAned.

De�nition 2.1. A path from i to j, depicted as i → j, for all i; j∈L ∪ G and all k,
is a sequence of solutions l0; l1; : : : ; ld ∈� with l0 = i; ld = j, l1; l2; : : : ; ld−1 ∈H , and
glm;lm+1(k)¿ 0 for m=0; 1; : : : ; d − 1.

Note that a local or global optimum cannot be an intermediate solution on any
path. However, the GHC algorithm can move from i to j via an intermediate solution
l∈L∪G, but the trajectory would not be deAned as a path. A path can be equivalent
to some other path, or distinct. These concepts are formally deAned.

De�nition 2.2. A path between solutions i; j∈L∪G is said to be equivalent to another
path between i and j, if
(a) all the solutions visited along both paths are identical;

(b) the order in which each solution is visited along both paths is identical.
If a path between solutions i; j∈L ∪ G is not equivalent to any other path between

i and j, then the path is said to be distinct.
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Fig. 2. Illustrative example.

Using these deAnitions, the probability of transitioning via a path between solutions
i; j∈L ∪ G can be deAned. Suppose that the distinct paths from i to j are labeled
s=1; 2; : : : ; S(i; j). Note that S(i; j) can be inAnite if one or more solutions in H can
be visited inAnitely often along a path. Let Pk(i

s→j) be the probability of transitioning
along the sth (distinct) path between i; j∈L ∪ G at iteration k. Therefore, Pk(i

s→j) is
the product of all one-step transition probabilities between adjacent solutions along the
sth path; e.g., for i; j∈�, the sth path i; l1; : : : ; ld−1, j∈� occurs with probability

Pk(i
s→j)=

d−1∏
m=0

Plm;lm+1(k):

Note that path distinctness is su1cient for the probability of the union of all distinct
paths between i; j∈� to be equal to the sum of the probabilities of the paths [5, p.
3].

De�nition 2.3. The path probability between any two solutions i; j∈L ∪ G is

Pk(i
s→j) ≡




S(i; j)∑
s=1

Pk(i → j); i 	= j;

1−
∑

t∈(L∪G)\{i}
Pk(i → j); i= j;

0; otherwise:

(3)

Note that Pk(i → j) can also be viewed as the transition probability from i to j at
iteration k. The example depicted in Fig. 2 illustrates how the path probabilities (3) are
deAned, where i; l∈L, j∈G, and p; q; r; s∈H . The neighborhood structure (indicating
all positive one-step transition probabilities) is indicated by the lines connecting the
nodes. Therefore, Pk(i → j)¿ 0, since i and j are separated only by q. Similarly,
Pk(l → j)¿ 0, since l and j are separated only by r. However, the only way to reach
solution l from solution i is to pass through the global optimum j, and so Pk(i → l)= 0
from the “otherwise” case of (3).

Recall that the GHC algorithm is composed of an outer loop, indexed on k, and an
inner loop, indexed on m. Furthermore, when the su1cient conditions of Theorem 3.1
(see Section 3) are satisAed, then �(k) is the equilibrium (long-run) probability vector
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for all solutions i∈�, for each k, as M approaches inAnity. DeAnition 2.4 introduces
�(k) as the vector of equilibrium probabilities �i(k) for all solutions i∈L ∪ G. Each
probability �i(k) is obtained by scaling the corresponding equilibrium probability �i(k)
over the total equilibrium probability !(k) of all solutions in L ∪ G.

De�nition 2.4. Let !(k) ≡∑i∈L∪G �i(k). DeAne the equilibrium probability

�i(k) ≡ �i(k)=!(k) for all i∈L ∪ G and all k:

Note that �i(k)¿ �i(k) for all k, since !(k)6 1.
DeAnitions 2.3 and 2.4 allow the primary convergence proof (Theorem 3.2) to focus

only on the sets of local and global optima, which will be shown to be the only
solutions of signiAcance for a GHC algorithm. This is done purely for theoretical
development. In practice, a GHC algorithm can visit any element in �, including
elements in H .

3. Proof of convergence

Theorem 3.1 provides the su1cient conditions for a unique equilibrium distribution
�(k) to exist for each iteration k. Corollary 3.1 shows that the GHC algorithm con-
verges to the set of solutions L ∪ G as k approaches inAnity. Theorem 3.2 provides
the additional su1cient conditions for the GHC algorithm to converge to the set of
globally optimal solutions G, as k approaches inAnity.

Theorem 3.1. Let (�; c) denote an instance of a discrete optimization problem with
neighborhood function �. Let the GHC transition probabilities Pi;j(k) be de:ned by
(1). Assume that the generation probabilities gi; j(k) satisfy
(a) for all i; j∈� and all iterations k; there exists an integer d¿ 1 and a cor-

responding sequence of solutions l0; l1; l2; : : : ; ld ∈�; with l0 = i; ld = j; and
glm;lm+1(k)¿ 0; m=0; 1; : : : ; d − 1;

(b) for all i; j∈�; j∈ �(i); limk→∞ gi; j(k) exists and is strictly positive.
Moreover; assume that the acceptance probabilities satisfy

(c) Pr(Rk(i; j)¿�i;j)¿ 0 for all i∈�; j∈ �(i); and all iterations k.
(d) ci ¡ cj ⇒ limk→∞ Pr(Rk(i; j)¿�i;j)= 0.

Then �(k) exists for each k.

Proof. See Appendix 1.
Corollary 3.1 show that the equilibrium probability of all non-optimal solutions (i.e.,

solutions that are neither local nor global optima) approach zero as k approaches
inAnity.

Corollary 3.1. If limk→∞ �(k) exists; then under the conditions and assumptions of
Theorem 3:1;

lim
k→∞

�i(k)= 0 for all i∈H: (4)
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Proof. See Appendix 2.
Corollary 3.2 shows that for all local and global optima i∈L ∪ G, the probabilities

�i(k) approach the equilibrium probabilities �i(k) in value, as k approaches inAnity.

Corollary 3.2. If limk→∞ �(k) exists; then under the conditions and assumptions of
Theorem 3:1; for all i∈L ∪ G;

lim
k→∞

�i(k)= lim
k→∞

�i(k):

Proof. See Appendix 3.
The following deAnitions of minimal and maximal path probabilities are used to

obtain the su1cient conditions presented in Theorem 3.2.

De�nition 3.1. The minimum positive path probability between any local (but not
global) optimum and any (local or global) optimum at iteration k is

Pk(Min Path) ≡ min{Pk(j → i) | j∈L; i∈L ∪ G and Pk(j → i)¿ 0}:

De�nition 3.2. The maximum path probability between any global optimum and any
local (but not global) optimum at iteration k is

Pk(Max Path) ≡ max{Pk(i → j) | i∈G; j∈L}:

De�nition 3.3. The maximal product of locally (but not globally) optimal solution
equilibrium distribution probabilities and their associated path probabilities to other
local (but not global) optima at iteration k is

Pk(Max Prod) ≡ max{�j(k)Pk(j → q) | j; q∈L; q 	= j}:

Theorem 3.2 provides su1cient conditions for the equilibrium probability of all local
(but not global) optima to approach zero, as k approaches inAnity.

Theorem 3.2. Under the conditions and assumptions of Theorem 3:1 and Corollary
3:2; if
(e)

∑∞
k=1 Pk(Min Path)= +∞,

(f )
∑∞

k=1 Pk(Max Path)¡+ ∞,
(g)

∑∞
k=1 Pk(Max Prod)¡+ ∞;

then

lim
k→∞

�j(k)= 0 for all j∈L: (5)

Proof. See Appendix 4.
The assumption that limk→∞�(k) exists is not a severe restriction, and is satisAed

by any GHC algorithm (that also meets conditions (a)–(d) whose hill climbing prob-
abilities become monotone nonincreasing as K approaches inAnity. This asymptotic
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monotone behavior is satisAed by the hill climbing acceptance functions typically used
in practice. This assumption does preclude, for example, pathological acceptance func-
tion formulations that could lead to oscillating �(k) vector values for k even versus
k odd. Moreover, in practice, it is di1cult to And GHC formulations that satisfy both
(e) and (f) unless Pk(Max Path)¡ Pk(Min Path). Examples 4:1 and 4:3 illustrate two
diMerent approaches of formulating algorithms that satisfy this inequality.

Note that Anily and Federgruen [3] provide the most general su1cient conditions
in the literature. However, while condition (g) requires that the equilibrium probability
distribution �(k) be explicitly known only for the set of local and global optima, Anily
and Federgruen’s [3] convergence theorem requires that the equilibrium distribution
�(k) be known for all solutions in �. Hence Theorem 3.2 is a relaxation of the
Anily and Federgruen [3] result, in that Theorem 3.2 requires equilibrium distribution
information for only a (presumably small) subset of the solution space. Note also that
other convergence theorems (e.g. [9]) use either the exponential acceptance function
formulation or reversible Markov chain theory to ensure that the solution probability
distributions (e.g., each �(k)) are explicitly known. Therefore, Theorem 3.2 allows
the use of acceptance functions that previously were unable to be proven convergent.
Section 4 provides several examples.

Corollary 3.3 shows that all probability mass is concentrated on the set of optimal
solutions G, as k approaches inAnity.

Corollary 3.3. Under the assumptions of Theorem 3:2; limk→∞ (
∑

i∈G �i(k))= 1.

Proof. See Appendix 5.

4. Illustrative examples

Section 4.1 illustrates how a GHC acceptance function, based on a rational function
of k; satisAes the conditions of Theorems 3:1–3:3. Section 4.2 shows that the threshold
accepting algorithm does not satisfy the su1cient conditions of Theorem 3.1. Additional
GHC acceptance formulations are discussed in Sections 4.3 and 4.4.

4.1. Generalized hill climbing acceptance as a rational function of k

Consider the eight-solution example depicted in Fig. 3, where G{p}; L= {q1; q2; q3};
and H = {r1; r2; r3; r4}; and the neighborhood structure is shown by the lines connect-
ing the nodes. Let each one-step transition probability be deAned (for all k¿ 2) as in
Fig. 4. Note that the rows and columns are arranged in order p; q1; q2; q3; r1; r2; r3; r4.
Also, gi; j(k) ≡ 1=2 for all i∈Q; j∈ �(i); and zero otherwise, for all k. Note that if
any two nodes are not connected by a line, then the two nodes are not neighbors and
the generation probability between these nodes is zero. Finally, Rk(p; rj) ≡ �p;rj =(k

2U )
for p; rj ∈�; j =1; 2; 3; 4 and Rk(qi; rj) ≡ �qi;rj =(kUj) for all i=1; 2; 3 and j =1; 2; 3; 4;
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Fig. 3. Solutions and neighbors.

Fig. 4. The one-step transition matrix P(k), deAned for k¿ 2.

where U is a random variable, distributed U (0; 1). Then Pr(Rk(p; rj)¿�p;rj)= 1=k2;
and Pr(Rk(qi; rj)¿�qi;rj)= 1=(kj) for all i=1; 2; 3 and j =1; 2; 3; 4; and all k. There-
fore, all solutions in � communicate, and so conditions (a) and (b) of Theorem 3.1
are satisAed. Furthermore, all hill climbing transition probabilities from each solution
in L ∪ G to its neighbors in H are strictly positive, and decrease monotonically with
limit zero as k approaches inAnity, hence conditions (c) and (d) are satisAed, and so
Theorem 3.1 and Corollary 3.1 apply. The su1cient conditions of Theorem 3.2 are
now addressed.

Condition (e) examines the path of minimum positive probability from the set of
local optima L to solutions in L ∪ G. Nine positive path probabilities exist:
(i) Pk(q1 → q2)=Pq1; r2(k)Pr2; q2(k)= (1=(4k))(1=2)=1=(8k),
(ii) Pk(q1 → p)= 1=(4k),
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(iii) Pk(q1 → q1)= 1− Pk(q1 → q2)− Pk(q1 → p)= 1− 3=(8k),
(iv) Pk(q2 → q1)= 1=(8k),
(v) Pk(q2 → q3)= 1=(12k),
(iv) Pk(q2 → q2)= 1− Pk(q2 → q1)− Pk(q2 → q3)= 1− 5=(24k),
(vii) Pk(q3 → q2)= 1=(12k),
(viii) Pk(q3 → p)= 1=(16k),
(ix) Pk(q3 → q3)= 1− Pk(q3 → q2)− Pk(q3 → p)= 1− 7=(48k).

Note that Pk(q2 → p)=Pk(q1 → q3)=Pk(q3 → q1)= 0, since either path must visit
an intermediate solution in L ∪ G. The probability (viii) is the minimal value of the
nine positive path probabilities, and so Pk(Min Path)=Pk(q3 → p). Hence

∞∑
k=2

Pk(q3 → p)=
∞∑
k=2

1=(16k)= +∞;

and therefore condition (e) holds.
To address condition (f), the path probabilities from global to local optima must be

examined. From the problem symmetry and neighborhood structure, only two positive
path probabilities exist, and they are equal. Hence

∞∑
k=2

Pk(Max Path) =
∞∑
k=2

Pk(p → q1)=
∞∑
k=2

Pk(p → q3)=
∞∑
k=2

1=(2k2)(1=2)

=
∞∑
k=2

1=(4k2)¡ +∞;

and so (f) holds.
Condition (g) requires that the equilibrium probability vector �(k) be known for all

solutions in L. Hence, solving for the equilibrium probabilities (see [5, p. 154]),

�p(k)=
60k2

60k2 + 360k + 215
; �q1 (k)=

78k
60k2 + 360k + 215

;

�q2 (k)=
114k

60k2 + 360k + 215
; and �q3 (k)=

168k
60k2 + 360k + 215

:

Therefore,

!(k)=
60k2 + 360k

60k2 + 360k + 215

and so

�q1 (k)=
13

10k + 60
; �q2 (k)=

19
10k + 60

; and �q3 (k)=
28

10k + 60
:

The maximal path probability is

Pk(Max Prod)= �q2 (k)Pk(q2 → q1)=
(

19
10k + 60

)(
1
8k

)
;
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and hence for condition (g),
∞∑
k=1

Pk(Max Prod)=
∞∑
k=1

(
19

10k + 60

)(
1
8k

)
=

∞∑
k=1

(
19

80k2 + 480k

)
¡∞;

and so the su1cient conditions of Theorems 3.1 and 3.2 are satisAed. Therefore
limk→∞ �p(k)= 1. Note that

lim
k→∞

�p(k)= lim
k→∞

k2

k2 + 6k
= lim

k→∞
�p(k)= lim

k→∞
60k2

60k2 + 360k + 215
=1;

which further conArms the convergence result.

4.2. GHC formulated as threshold accepting

The threshold accepting (TA) algorithm [6] results from Axing the random variable
Rk as a constant for each k. To implement the TA algorithm, deAne an initial threshold
Q0 such that

Q0¿ max
all i∈�
j∈�(i)

(cj − ci);

|Qk |6Q0 for all k;

lim
k→∞

Qk =0: (6)

The initial threshold Q0 represents the minimum one-step increase in objective function
value necessary for the GHC algorithm to be able to transition from any solution i to
any neighboring solution j. Then the GHC acceptance probability distribution is

Pr(Rk(i; j)¿�i;j) = PR(Qk ¿�i;j)

=

{
1 if Qk ¿�i;j

0 otherwise:
(7)

Note that no proofs of TA convergence to (4) and (5) are presented in the literature
[2]. Furthermore, the TA formulation (6) does not satisfy the su1cient condition (c)
Theorem 3.1.

Note that Jacobson and YPucesan [11] provide necessary convergence conditions for
GHC algorithms. They use these conditions to establish that threshold accepting will
not converge asymptotically to the set of globally optimal solutions if the limit equation
in (6) holds.

4.3. GHC formulated as simulated annealing

Johnson and Jacobson [13] show that the GHC solution acceptance probability
can be formulated as simulated annealing, by setting Rk(i; j) ≡ −tk ln(U ) for all
i; j∈�; j∈ �(i), and all k, where tk is a cooling parameter and U is a U (0; 1) ran-
dom variable. Then for hill climbing moves, the acceptance probability is Pr(Rk(i; j)¿
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�i;j)= exp(−�i;j=tk). (Recall from Fig. 1 that transitions to equal or improving solu-
tions are accepted with probability one). Note that for all i; j∈� and for all tk ¿ 0;
exp(−�i;j=tk)¿ 0 and so condition (c) in Theorem 3.1 is satisAed. If limk→∞ tk =0,
then ci ¡ cj implies that lim exp(−�i;j=tk)= 0, hence condition (d) in Theorem 3.1 is
satisAed. Therefore if conditions (a) and (b) on the solution generation probabilities
are met, then Theorem 3.1 applies. Aarts, Korst, and van Laarhoven [14] show that
the simulated annealing stationary distribution for all i∈�, and for each outer loop
iteration k, is

�i(k)=
exp(−ci=tk)∑

n∈� exp(−cn=tk)
: (8)

To show that the conditions in Theorem 3.2 can hold, Arst, from conditions (a)–(c),
there exists some positive integer b such that Pk(Min Path) is bounded below by a
single path of length b between the Min Path solutions j∈L; i∈L ∪ G, such that

Pk(Min Path)¿ Pj;l1 (k)Pl1 ;l2 (k) : : : Plb;j(k)

= gj; l1 (k) exp(−�j;l1 =tk)gl1 ;l2 (k) exp(−�l1 ;l2 =tk) : : : glb;i(k)

exp(−�lb;i=tk)

= gj; l1 (k)gl1 ;l2 (k) : : : glb;i(k) exp(−�j; i=tk):

DeAne d∗ as the depth of the deepest local minimum in the set L [9], and set d∗ =�j; i.
Moreover, deAne the cooling parameter tk =d∗=ln(k + 1). Finally, set the solution
generation probabilities gi; j=(k) to be independent of k for all i; j∈� (i.e., gi; j(k)= gi; j

for all k). Then condition (e) is satisAed since
∞∑
k=1

Pk(Min Path)¿
∞∑
k=1

Pj;l1 (k)Pl1 ;l2 (k) : : : Plb;j(k)

=
∞∑
k=1

gj; l1 (k)gl1 ;l2 (k) : : : glb;i(k) exp(−�j; i=tk)

= +∞:

To address condition (f), from condition (a), there exists two positive integers d and
s such that Pk(Max Path) is bounded above by a single path of length d between the
Max Path solutions m∈G; n∈L, such that

Pk(Max Path)6 s[Pm;l1 (k)Pl1 ;l2 (k) : : : Pld;n(k)]

= s[gm;l1 (k) exp(−�m;l1 =tk)gl1 ;l2 (k) exp(−�l1 ;l2 =tk) : : : gld;n(k)

exp(−�ld;n=tk)]

= s[gm;l1 (k)gl1 ;l2 (k) : : : gld;n(k) exp(−�m;n=tk)]:
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If d∗ ¡ �m;n, then
∞∑
k=1

Pk(Max Path)6
∞∑
k=1

s[Pm;l1 (k)Pl1 ;l2 (k) : : : Pld;n(k)]

= s
∞∑
k=1

[gm;l1 (k)gl1 ;l2 (k) : : : gld;n(k) exp(−�m;n=tk)]

¡ +∞;

hence condition (f) is satisAed. Note that while the requirement that d∗ ¡ �m;n may
seem restrictive, Hajek’s necessary and su1cient conditions for simulated annealing
require that the depth of an optimal solution be in:nite [9].

Finally, to show that condition (g) holds, from (8) and DeAnition 2.4,

�i(k) =
�i(k)
!(k)

=
exp(−ci=tk)∑

n∈� exp(−cn=tk)

/ ∑
m∈L∪G

exp(−cm=tk)∑
n∈� exp(−cn=tk)

=
exp(−ci=tk)∑

m∈L∪G exp(−cm=tk)
:

From condition (a), there exists two positive integers v and x such that Pk(Max Prod)
is bounded above by a single path of length v between the Max Prod solutions j; q∈L.
This implies that

Pk(Max Prod) = �j(k)Pk(j → q)

6
exp(−cj=tk)∑

m∈L∪G exp(−cm=tk)
(x)[Pj;l1 (k)Pl1 ;l2 (k) : : : Plv;q(k)]

=
exp(−cj=tk)∑

m∈L∪G exp(−cm=tk)
(x)[gj; l1 (k) : : : glv;q(k) exp(−�j;q=tk)]

= (x)
exp(−cq=tk)∑

m∈L∪G exp(−cm=tk)
[gj; l1 (k) : : : glv;q(k)]:

Therefore
∞∑
k=1

Pk(Max Prod)6
∞∑
k=1

(x)
exp(−cq=tk)∑

m∈L∪G exp(−cm=tk)
[gj; l1 (k) : : : glv;q(k)]

= (x)
∞∑
k=1

1∑
m∈L∪G

exp(−cm=tk )
exp(−cq=tk )

[gj; l1 (k) : : : glv;q(k)]

= (x)
∞∑
k=1

1∑
m∈L∪G exp(−�q;m=tk)

[gj; l1 (k) : : : glv;q(k)]

¡ +∞;

hence condition (g) is satisAed, and Theorem 3.2 and Corollary 3.3 apply. Finally, note
that if Rk(i; j) ≡ 0 for all i; j∈�; j∈ �(i), and all k, the resulting algorithm is local
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search, while if Rk(i; j) ≡ +∞ for all i; j∈� and all k, and �(i)=�, the resulting
algorithm is Monte Carlo search.

4.4. GHC formulated as the noising method

If Rk(i; j)=wVk for all i; j∈� and all k, where w=max{(cj − ci)i; j∈�} and Vk

are independent random variables such that E[Vk ]¿ 0 for all k, and Vk →P 0 as k
approaches inAnity, then the resulting algorithm is the noising method. If the Vk are
formulated so that the conditions of Theorem 3.2 hold, then the noising method can be
designed to converge to the set of globally optimal solutions. Using a similar analysis
as described for simulated annealing, this would require, for example, that the Vk have
an unbounded tail (i.e., P{Vk ¿ v}¿ 0 for all k and for all v∈R). Note that since the
deAnition of the random variables Vk are problem speciAc, based on how randomness
is added to the diMerent solution components, hence the resulting objective function
values, each such problem must be treated on a case by case base to ensure that
conditions (a)–(g) hold.

5. Implications and conclusions

This paper presents a proof of convergence for generalized hill climbing (GHC) algo-
rithms. Implications arising from this result are discussed, and examples are presented
that illustrate the GHC algorithm convergence conditions.

The principal contribution of Theorems 3.1 and 3.2 is that a large body of convergent
stochastic hill climbing algorithms is created, where only simulated annealing existed
previously. For example, the noising method will converge if it is deAned such that
it is asymptotically easier to escape from any local minimum than a global minimum.
Conversely, local search and threshold accepting do not meet the su1cient conditions
of Theorems 3.1 and 3.2. Though this does not prove that these algorithms do not
converge, the necessary convergence conditions in Jacobson and YPucesan [11] establish
such nonconvergence results.

Theorems 3.1 and 3.2, and Corollaries 3.1 and 3.2, together prove that under certain
conditions the set of globally optimal solutions G must occur with probability one as
k approaches inAnity. However, the theorems do not show how the probability mass is
asymptotically distributed among the global optima. Hence in the limit, some globally
optimal solutions may occur with greater probability that other global optima. Note
that conditions (e) and (g) together imply that for all solutions j∈L, each equilibrium
probability �j(k) must approach zero at a minimum rate su1cient for (g) to hold, as
k → ∞.

Computational results for various GHC algorithms applied to a discrete manufactur-
ing process design problem are reported by Jacobson et al. [10]. Research is in progress
to determine whether the conditions of Theorem 3.2 are also necessary, and whether
they can be reformulated or relaxed, in order to make them easier to verify. Research is



A.W. Johnson, S.H. Jacobson /Discrete Applied Mathematics 119 (2002) 37–57 51

also in progress to assess whether tailoring the probability distribution associated with
the random variable Rk(i; j) can optimize the GHC algorithm’s Anite-time performance
on speciAc discrete optimization classes.

Appendix 1. Proof of Theorem 3.1.
See DeAnitions 6 and 7, and Theorem 1 of Aarts et al. [1, p. 100].

Appendix 2. Proof of Corollary 3.1.
The proof shows that the equilibrium probability limk→∞ �h(k) is zero (given that

it exists), for the hth solution by establishing a contradiction based on an inductive
argument.

Let HB be all solutions in H that fail to have zero probability in the limit. Order
the solutions in HB such that for all i; j∈HB; i ¡ j implies ci ¡ cj. Without loss of
generality, assume that the objective function value of each solution in H is unique.
(Else, each solution’s value could be perturbed by some epsilon amount.) So solu-
tion number one is the solution in HB with the smallest objective function value,
solution two the next smallest, and so on. Let h ≡ card(HB), so solution h has the
largest objective function value. We will proceed to eliminate i= h; h−1; : : : ; 1 in that
order.

First using the law of total probability [5, p. 15] and conditioning on all solutions
j∈�,

�i(k)=
∑
j∈�

�j(k)Pj; i(k) for all i∈� and all k: (9)

For any solution i∈H , the equilibrium probability �i(k) is expressed in terms of (9)
as

�i(k)=
∑
j∈G

�j(k)Pj; i(k) +
∑
j∈L

�j(k)Pj; i(k) +
∑
j∈H

�j(k)Pj; i(k):

Collect all the �i(k) terms on the left-hand side to obtain

�i(k)(1− Pi; i(k))=
∑
j∈G

�j(k)Pj; i(k) +
∑
j∈L

�j(k)Pj; i(k) +
∑
j∈H
j �=i

�j(k)Pj; i(k):

(10)

Note that

(1− Pi; i(k))=
∑
j∈�;
i �=j

Pi; j(k)=
∑
j∈�;
i �=j;

ci¿cj

Pi; j(k) +
∑
j∈�;
ci¡cj

Pi; j(k):
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(e.g., (1−Pi; i(k)) is the probability that the process does not remain at solution i∈H
in the next transition). Hence, (10) can be expressed as

�i(k)



∑
j∈�;
i �=j;

ci¿cj

Pi; j(k) +
∑
j∈�;
ci¡cj

Pi; j(k)




=
∑
j∈G

�j(k)Pj; i(k) +
∑
j∈L

�j(k)Pj; i(k) +
∑
j∈H
j �=i

�i(k)Pj; i(k):

Rewrite the right-hand side in terms of hill climbing transitions for elements in set H
to obtain

�i(k)



∑
j∈�;
i �=j;

ci¿cj

Pi; j(k) +
∑
j∈�;
ci¡cj

Pi; j(k)




=
∑
j∈G

�j(k)Pj; i(k) +
∑
j∈L

�j(k)Pj; i(k) +
∑
j∈H;
j �=i;

cj¿ci

�j(k)Pj; i(k)

+
∑
j∈H;
cj¡ci

�j(k)Pj; i(k):

Note that since there are only a Anite number of summands, each of which is non-
negative, then the limit of the sums is equal to the sum of the limits [15, p. 37].
Therefore,

lim
k→∞




�i(k)
∑
j∈�;
i �=j;

ci¿cj

Pi; j(k)




+ lim
k→∞


�i(k)

∑
j∈�;
ci¡cj

Pi; j(k)




= lim
k→∞


∑

j∈G

�j(k)Pj; i(k)


+ lim

k→∞


∑

j∈L

�j(k)Pj; i(k)



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+ lim
k→∞



∑
j∈H;
j �=i;

cj¿ci

�j(k)Pj; i(k)




+ lim
k→∞



∑
j∈H;
cj¡ci

�j(k)Pj; i(k)


 : (11)

From (1) and condition (d) in Theorem 3.1, all one-step hill climbing transition prob-
abilities approach zero in the limit. Therefore,

lim
k→∞


�i(k)

∑
j∈�;
ci¡cj

Pi; j(k)


= lim

k→∞


∑

j∈G

�j(k)Pj; i(k)




= lim
k→∞


∑

j∈L

�j(k)Pj; i(k)




= lim
k→∞



∑
j∈H;
cj¡ci

�j(k)Pj; i(k)


=0;

since each of the summands include only hill climbing transitions. Therefore, (11)
simpliAes to

lim
k→∞




�i(k)
∑
j∈�;
i �=j;

ci¿cj

Pi; j(k)




= lim
k→∞



∑
j∈H;
j �=i;

cj¿ci

�j(k)Pj; i(k)




for all i∈H:

(12)

We now proceed with the backward induction. Consider (12) for the particular so-
lution i= h∈HB (recall that h is the solution of maximal objective function value,
e.g., ch ¿ cj for all j∈HB \ {h}, since all solutions are arranged in order of increasing
objective function value). The right-hand side of (12) is zero because there are no
solutions j∈H of cost greater than that of solution h with nonzero limit. Recall we
assume that

lim
k→∞

�i(k)= 0i ¿ 0 for all i∈HB:

Furthermore, since h is by deAnition not a local minimum, then there must exist at
least one solution l∈�; l∈ �(h), such that ch¿ cl. Therefore, since Rk(i; j)¿ 0 for



54 A.W. Johnson, S.H. Jacobson /Discrete Applied Mathematics 119 (2002) 37–57

all i; j∈� and from (1) and condition (b), the left-hand side of (12) is

lim
k→∞




�h(k)
∑
j∈�;
h�=j;

ch¿cj

Ph;j(k)




= 0h lim
k→∞

∑
j∈�;

j∈�(h);
ch¿cj

gh; j(k)Pr(Rk(h; j)¿�h;j)

= 0h lim
k→∞

∑
j∈�;

j∈�(h);
ch¿cj

gh; j(k)(1)

¿ 0h lim
k→∞

gh;l(k)

¿ 0;

which is a contradiction, since the right-hand side of (12) has limit zero. Thus

lim
k→∞

�h(k)= 0:

Proceed with the induction, by considering (11) for solutions h − 1; h − 2; : : : ; 1.

Appendix 3. Proof of Corollary 3.2.
Recall that the equilibrium probabilities of all solutions in � must sum to one.

Taking the limit of this sum as k approaches inAnity leads to

1 = lim
k→∞

(∑
i∈H

�i(k) +
∑

i∈L∪G

�i(k)

)

=
∑
i∈H

lim
k→∞

�i(k) +
∑

i∈L∪G

lim
k→∞

�i(k)

= lim
k→∞

∑
i∈L∪G

�i(k)= lim
k→∞

!(k):

Since limk→∞!(k)= 1 and 06 limk→∞�i(k)6 1 for all i∈�, hence the limit of the
quotient �i(k)=!(k) is equal to the quotient of the limits [15:39], and so

lim
k→∞

�i(k)= lim
k→∞

(�i(k)=!(k))= lim
k→∞

�i(k); for all i∈L ∪ G:

Appendix 4. Proof of Theorem 3.2.
(by contradiction): First, each element of �(k) is expressed using the law of total

probability, and the path probabilities (3). Hence for each iteration k,

�j(k)=
∑
i∈G

�i(k)Pk(i → j) +
∑
i∈L

�i(k)Pk(i → j) for all j∈L ∪ G:
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Next, assume there exists some j∈L and an iteration k1 such that for all k¿ k1;
�j(k)¿ 0 ¿ 0. Summing over all iterations k leads to

∞∑
k=1

�j(k)=
∞∑
k=1

∑
i∈G

�i(k)Pk(i → j) +
∞∑
k=1

∑
i∈L

�i(k)Pk(i → j):

Since � is Anite and all summands are nonnegative, then the order of the summations
can be interchanged, resulting in

∞∑
k=1

�j(k)=
∑
i∈G

∞∑
k=1

�i(k)Pk(i → j) +
∑
i∈L

∞∑
k=1

�i(k)Pk(i → j):

Collecting �j(k) terms on the left-hand side leads to
∞∑
k=1

�j(k)(1− Pk(j → j))=
∑
i∈G

∞∑
k=1

�i(k)Pk(i → j) +
∑
i∈L
i �=j

∞∑
k=1

�i(k)Pk(i → j):

(13)

Note that (1−Pk(j → j)) is the probability that, given the process is in solution j∈L,
the process transitions to any solution i∈L ∪ G except solution j. Note that since all
solutions communicate (from Theorem 1), a path exists such that j can reach some
q∈L ∪ G. Therefore, two cases are possible.
Case 1: Suppose the process transitions to a particular global optimum q∈G. Hence,

Pk(j → q)6 (1− Pk(j → j));

and so (13) becomes
∞∑
k=1

�j(k)Pk(j → q)6
∑
i∈G

∞∑
k=1

�i(k)Pk(i → j) +
∑
i∈L
i �=j

∞∑
k=1

�i(k)Pk(i → j):

(14)

Since �i(k)6 1 for all i∈� and all k, then (14) can be rewritten as

k1∑
k=1

�j(k)Pk(j → q) +
∞∑

k=k1+1

0Pk(j → q)

6
∑
i∈G

∞∑
k=1

Pk(i → j) +
∑
i∈L
i �=j

∞∑
k=1

�i(k)Pk(i → j): (15)

For the left-hand side of (15), condition (e) leads to

+∞=
∞∑

k=k1+1

0Pk(Min Path)6
∞∑

k=k1+1

0Pk(j → q): (16)
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Now consider the right-hand side of (15). Since � is Anite, then conditions (g) and
(h) lead to

∑
i∈G

∞∑
k=1

Pk(i → j) +
∑
i∈L
i �=j

∞∑
k=1

�i(k)Pk(i → j)

6
∑
i∈G

∞∑
k=1

Pk(Max Path) +
∑
i∈L;
i �=j

∞∑
k=1

Pk(Max Prod)¡∞;

which contradicts (16). Therefore there cannot exist any iteration k1 such that (15)
holds, and so condition (e) implies that

lim
k→∞

�j(k)= 0:

Case 2: Suppose the process transitions to a particular local optimum q∈L. Then
using the same argument as Case 1,

lim
k→∞

�j(k)= 0:

Therefore,

lim
k→∞

�j(k)= 0 for all j∈L:

Appendix 5. Proof of Corollary 3.3.
Express the sum of the equilibrium solution probabilities in terms of sets H; L, and

G to obtain∑
i∈�

�i(k)=
∑
i∈H

�i(k) +
∑
i∈L

�i(k) +
∑
i∈G

�i(k)= 1:

Since the limit (as k approaches inAnity) exists for each equilibrium probability and
the solution space is Anite, then the limit of the sum is equal to the sum of the limits
[15; 37]. Therefore,

lim
k→+∞

∑
i∈�

�i(k)= lim
k→+∞

∑
i∈H

�i(k) + lim
k→+∞

∑
i∈L

�i(k) + lim
k→+∞

∑
i∈G

�i(k)= 1:

Theorems 3.1, 3.2, and Corollaries 3.1 and 3.2 lead to∑
i∈H

lim
k→+∞

�i(k)=
∑
i∈L

lim
k→+∞

�i(k)= 0;

which implies∑
i∈G

lim
k→+∞

�i(k)= lim
k→+∞

∑
i∈G

�i(k)= 1
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