7,598 research outputs found

    Group gradings on finitary simple Lie algebras

    Full text link
    We classify, up to isomorphism, all gradings by an arbitrary abelian group on simple finitary Lie algebras of linear transformations (special linear, orthogonal and symplectic) on infinite-dimensional vector spaces over an algebraically closed field of characteristic different from 2.Comment: Several typographical errors have been correcte

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004

    Black holes admitting a Freudenthal dual

    Full text link
    The quantised charges x of four dimensional stringy black holes may be assigned to elements of an integral Freudenthal triple system whose automorphism group is the corresponding U-duality and whose U-invariant quartic norm Delta(x) determines the lowest order entropy. Here we introduce a Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the requirement that \tilde{x} be integer restricts us to the subset of black holes for which Delta(x) is necessarily a perfect square. The issue of higher-order corrections remains open as some, but not all, of the discrete U-duality invariants are Freudenthal invariant. Similarly, the quantised charges A of five dimensional black holes and strings may be assigned to elements of an integral Jordan algebra, whose cubic norm N(A) determines the lowest order entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a perfect cube, for which A**=A and which leaves N(A) invariant. The two dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde

    Small Orbits

    Full text link
    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.Comment: 40 pages, 9 tables. References added. Expanded comments added to sections III. C. 1. and III. F.

    Nonassociative differential extensions of characteristic p

    Get PDF
    Let F be a field of characteristic p. We define and investigate nonassociative differential extensions of F and of a finite-dimensional central division algebra over F and give a criterium for these algebras to be division. As special cases, we obtain classical results for associative algebras by Amitsur and Jacobson. We construct families of nonassociative division algebras which can be viewed as generalizations of associative cyclic extensions of a purely inseparable field extension of exponent one or a central division algebra. Division algebras which are nonassociative cyclic extensions of a purely inseparable field extension of exponent one are particularly easy to obtain

    Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Brane Scenario

    Full text link
    In this paper, we examine the validity of the generalized second law of thermodynamics (GSLT) of the universe bounded by the event horizon in brane-world gravity. Here we consider homogeneous and isotropic model of the universe filled with perfect fluid in one case and in another case holographic dark energy model of the universe has been considered. The conclusions are presented point wise.Comment: 8 pages, the paper has been accepted in EPJC for publication. Conclusion has been modified an some references have been adde

    Systems development methods and usability in Norway: An industrial perspective

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2007 Springer Berlin HeidelbergThis paper investigates the relationship between traditional systems development methodologies and usability, through a survey of 78 Norwegian IT companies. Building on previous research we proposed two hypotheses; (1) that software companies will generally pay lip service to usability, but do not prioritize it in industrial projects, and (2) that systems development methods and usability are perceived as not being integrated. We find support for both hypotheses. Thus, the use of systems development methods is fairly stable, confirming earlier research. Most companies do not use a formal method, and of those who do, the majority use their own method. Generally, the use of methods is rather pragmatic: Companies that do not use formal methods report that they use elements from such methods. Further, companies that use their own method import elements from standardised methods into their own

    Model of black hole evolution

    Get PDF
    From the postulate that a black hole can be replaced by a boundary on the apparent horizon with suitable boundary conditions, an unconventional scenario for the evolution emerges. Only an insignificant fraction of energy of order (mG)1(mG)^{-1} is radiated out. The outgoing wave carries a very small part of the quantum mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.Comment: 9 pages, harvmac, 3 figures, minor addition

    Generic bounds on dipolar gravitational radiation from inspiralling compact binaries

    Full text link
    Various alternative theories of gravity predict dipolar gravitational radiation in addition to quadrupolar radiation. We show that gravitational wave (GW) observations of inspiralling compact binaries can put interesting constraints on the strengths of the dipole modes of GW polarizations. We put forward a physically motivated gravitational waveform for dipole modes, in the Fourier domain, in terms of two parameters: one which captures the relative amplitude of the dipole mode with respect to the quadrupole mode (α\alpha) and the other a dipole term in the phase (β\beta). We then use this two parameter representation to discuss typical bounds on their values using GW measurements. We obtain the expected bounds on the amplitude parameter α\alpha and the phase parameter β\beta for Advanced LIGO (AdvLIGO) and Einstein Telescope (ET) noise power spectral densities using Fisher information matrix. AdvLIGO and ET may at best bound α\alpha to an accuracy of 102\sim10^{-2} and 103\sim10^{-3} and β\beta to an accuracy of 105\sim10^{-5} and 106\sim10^{-6} respectively.Comment: Matches with the published versio

    Model of black hole evolution

    Get PDF
    From the postulate that a black hole can be replaced by a boundary on the apparent horizon with suitable boundary conditions, an unconventional scenario for the evolution emerges. Only an insignificant fraction of energy of order (mG)1(mG)^{-1} is radiated out. The outgoing wave carries a very small part of the quantum mechanical information of the collapsed body, the bulk of the information remaining in the final stable black hole geometry.Comment: 9 pages, harvmac, 3 figures, minor addition
    corecore