13,341 research outputs found

    Low-loss photonic crystal fibers for transmission systems and their dispersion properties

    Full text link
    We report on a single-mode photonic crystal fiber with attenuation and effective area at 1550 nm of 0.48 dB/km and 130 square-micron, respectively. This is, to our knowledge, the lowest loss reported for a PCF not made from VAD prepared silica and at the same time the largest effective area for a low-loss (< 1 dB/km) PCF. We briefly discuss the future applications of PCFs for data transmission and show for the first time, both numerically and experimentally, how the group velocity dispersion is related to the mode field diameterComment: 5 pages including 3 figures + 1 table. Accepted for Opt. Expres

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    A real-space grid implementation of the Projector Augmented Wave method

    Get PDF
    A grid-based real-space implementation of the Projector Augmented Wave (PAW) method of P. E. Blochl [Phys. Rev. B 50, 17953 (1994)] for Density Functional Theory (DFT) calculations is presented. The use of uniform 3D real-space grids for representing wave functions, densities and potentials allows for flexible boundary conditions, efficient multigrid algorithms for solving Poisson and Kohn-Sham equations, and efficient parallelization using simple real-space domain-decomposition. We use the PAW method to perform all-electron calculations in the frozen core approximation, with smooth valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of twenty small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency is comparable to standard plane-wave methods, but the memory requirements are higher.Comment: 13 pages, 3 figures, accepted for publication in Physical Review

    A Prismatic Analyser concept for Neutron Spectrometers

    Get PDF
    A development in modern neutron spectroscopy is to avoid the need of large samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can be combined with advanced focusing geometries and with multiplexing instrument designs. We present a combination of simulations and data with 3 energies from one analyser. The data was taken on a prototype installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2 times finer resolution and a factor 1.9 in flux gain compared to a Rowland geometry or 3 times finer resolution and a factor 3.2 in flux gain compared to a single flat analyser slab

    Computational Design of Chemical Nanosensors: Metal Doped Carbon Nanotubes

    Get PDF
    We use computational screening to systematically investigate the use of transition metal doped carbon nanotubes for chemical gas sensing. For a set of relevant target molecules (CO, NH3, H2S) and the main components of air (N2, O2, H2O), we calculate the binding energy and change in conductance upon adsorption on a metal atom occupying a vacancy of a (6,6) carbon nanotube. Based on these descriptors, we identify the most promising dopant candidates for detection of a given target molecule. From the fractional coverage of the metal sites in thermal equilibrium with air, we estimate the change in the nanotube resistance per doping site as a function of the target molecule concentration assuming charge transport in the diffusive regime. Our analysis points to Ni-doped nanotubes as candidates for CO sensors working under typical atmospheric conditions

    Critical manifold of the kagome-lattice Potts model

    Full text link
    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure

    Evaluation of an in-clinic Serum Amyloid A (SAA) assay and assessment of the effects of storage on SAA samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An in-clinic assay for equine serum amyloid A (SAA) analysis, Equinostic EVA1, was evaluated for use in a clinical setting. Stability of SAA in serum samples was determined.</p> <p>Methods</p> <p>Intra- and inter- assay variation of the in-clinic method was determined. The in-clinic method (EVA1) results were compared to a reference method (Eiken LZ SAA) with 62 patient samples. For samples with SAA concentrations within the assay range of EVA1 (10-270 mg/L), differences between the methods were evaluated in a difference plot. Linearity under dilution was evaluated in two samples. Stability of SAA in three serum pools stored at 4°C and approximately 22°C was evaluated with the reference method day 0, 1, 2, 4, 7, 17 and analysed with a two-way ANOVA.</p> <p>Results</p> <p>The imprecision (coefficient of variation, CV) for the in-clinic method was acceptable at higher SAA concentrations with CV values of 7,3-12%, but poor at low SAA concentrations with CV values of 27% and 37% for intra- and inter-assay variation respectively. Recovery after dilution was 50-138%. The in-clinic assay and the reference method identified equally well horses with low (<10 mg/L) and high (>270 mg/L) SAA concentrations. Within the assay range of the in-clinic method, 10-270 mg/L, the difference between the two methods was slightly higher than could be explained by the inherent imprecision of the assays. There were no significant changes of serum SAA concentrations during storage.</p> <p>Conclusions</p> <p>The in-clinic assay identified horses with SAA concentrations of <10 mg/L and >270 mg/L in a similar way as the reference method, and provided an estimate of the SAA concentration in the range of 10-270 mg/L. The imprecision of the in-clinic method was acceptable at high SAA concentrations but not at low concentrations. Dilution of samples gave inconsistent results. SAA was stable both at room temperature and refrigerated, and thus samples may be stored before analysis with the reference method.</p

    Critical behavior of loops and biconnected clusters on fractals of dimension d < 2

    Full text link
    We solve the O(n) model, defined in terms of self- and mutually avoiding loops coexisting with voids, on a 3-simplex fractal lattice, using an exact real space renormalization group technique. As the density of voids is decreased, the model shows a critical point, and for even lower densities of voids, there is a dense phase showing power-law correlations, with critical exponents that depend on n, but are independent of density. At n=-2 on the dilute branch, a trivalent vertex defect acts as a marginal perturbation. We define a model of biconnected clusters which allows for a finite density of such vertices. As n is varied, we get a line of critical points of this generalized model, emanating from the point of marginality in the original loop model. We also study another perturbation of adding local bending rigidity to the loop model, and find that it does not affect the universality class.Comment: 14 pages,10 figure
    corecore