6,291 research outputs found

    Nonlinear effect on quantum control for two-level systems

    Full text link
    The traditional quantum control theory focuses on linear quantum system. Here we show the effect of nonlinearity on quantum control of a two-level system, we find that the nonlinearity can change the controllability of quantum system. Furthermore, we demonstrate that the Lyapunov control can be used to overcome this uncontrollability induced by the nonlinear effect.Comment: 4 pages, 5 figure

    Observation of insulating nanoislands in ferromagnetic GaMnAs

    Get PDF
    Resonant Raman data on ferromagnetic GaMnAs reveal the existence of a new kind of defect: insulating nanoislands consisting of substitutional Mn-Ga acceptors surrounded by interstitial Mn-I donors. As indicated by the observation of a sharp 1S(3/2)-> 2S(3/2) Raman transition at similar to 703 cm(-1), the acceptor-bound holes inside the islands are isolated from the metallic surroundings. Instead, Mn-bound excitons do couple to the ferromagnetic environment, as shown by the presence of associated Raman magnon side bands. This leads to an estimate of 5-10 nm for the nanoisland radius. The islands disappear after annealing due to the removal of the Mn-I ions

    Jet Quenching in Heavy Ion Collisions

    Get PDF
    This review article was prepared for the Landolt-Boernstein volume on Relativisitc Heavy Ion Physics.Comment: Review articel accepted for publication in the Landolt-Boernstein Handbook of Physics, ed. R. Stock. 41 pages LaTex, 7 eps-figure

    Exchange bias effect in alloys and compounds

    Full text link
    The phenomenology of exchange bias effects observed in structurally single-phase alloys and compounds but composed of a variety of coexisting magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic, spin-glass, cluster-glass and disordered magnetic states are reviewed. The investigations on exchange bias effects are discussed in diverse types of alloys and compounds where qualitative and quantitative aspects of magnetism are focused based on macroscopic experimental tools such as magnetization and magnetoresistance measurements. Here, we focus on improvement of fundamental issues of the exchange bias effects rather than on their technological importance

    Quantum Fluctuations Driven Orientational Disordering: A Finite-Size Scaling Study

    Full text link
    The orientational ordering transition is investigated in the quantum generalization of the anisotropic-planar-rotor model in the low temperature regime. The phase diagram of the model is first analyzed within the mean-field approximation. This predicts at T=0T=0 a phase transition from the ordered to the disordered state when the strength of quantum fluctuations, characterized by the rotational constant Θ\Theta, exceeds a critical value ΘcMF\Theta_{\rm c}^{MF}. As a function of temperature, mean-field theory predicts a range of values of Θ\Theta where the system develops long-range order upon cooling, but enters again into a disordered state at sufficiently low temperatures (reentrance). The model is further studied by means of path integral Monte Carlo simulations in combination with finite-size scaling techniques, concentrating on the region of parameter space where reentrance is predicted to occur. The phase diagram determined from the simulations does not seem to exhibit reentrant behavior; at intermediate temperatures a pronounced increase of short-range order is observed rather than a genuine long-range order.Comment: 27 pages, 8 figures, RevTe

    Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Get PDF
    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the ^(13)CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented

    Measurement of the Branching Fraction of the Decay B+π+π+ν\boldsymbol{B^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_\ell} in Fully Reconstructed Events at Belle

    Get PDF
    We present an analysis of the exclusive B+π+π+νB^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} decay, where \ell represents an electron or a muon, with the assumption of charge-conjugation symmetry and lepton universality. The analysis uses the full Υ(4S)\Upsilon(4S) data sample collected by the Belle detector, corresponding to 711 fb1^{-1} of integrated luminosity. We select the events by fully reconstructing one BB meson in hadronic decay modes, subsequently determining the properties of the other BB meson. We extract the signal yields using a binned maximum-likelihood fit to the missing-mass squared distribution in bins of the invariant mass of the two pions or the momentum transfer squared. We measure a total branching fraction of B(B+π+π+ν)=[22.71.6+1.9(stat)±3.5(syst)]×105{{\cal B}(B^{+}\to \pi^{+}\pi^{-}\ell^{+}\nu_{\ell})= [22.7 ^{+1.9}_{-1.6} (\mathrm{stat}) \pm 3.5(\mathrm{syst}) ]\times 10^{-5}}, where the uncertainties are statistical and systematic, respectively. This result is the first reported measurement of this decay.Comment: 23 pages, 19 figure

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue

    LMS-Verify: abstraction without regret for verified systems programming

    Get PDF
    Performance critical software is almost always developed in C, as programmers do not trust high-level languages to deliver the same reliable performance. This is bad because low-level code in unsafe languages attracts security vulnerabilities and because development is far less productive, with PL advances mostly lost on programmers operating under tight performance constraints. High-level languages provide memory safety out of the box, but they are deemed too slow and unpredictable for serious system software. Recent years have seen a surge in staging and generative programming: the key idea is to use high-level languages and their abstraction power as glorified macro systems to compose code fragments in first-order, potentially domain-specific, intermediate languages, from which fast C can be emitted. But what about security? Since the end result is still C code, the safety guarantees of the high-level host language are lost. In this paper, we extend this generative approach to emit ACSL specifications along with C code. We demonstrate that staging achieves ``abstraction without regret'' for verification: we show how high-level programming models, in particular higher-order composable contracts from dynamic languages, can be used at generation time to compose and generate first-order specifications that can be statically checked by existing tools. We also show how type classes can automatically attach invariants to data types, reducing the need for repetitive manual annotations. We evaluate our system on several case studies that varyingly exercise verification of memory safety, overflow safety, and functional correctness. We feature an HTTP parser that is (1) fast (2) high-level: implemented using staged parser combinators (3) secure: with verified memory safety. This result is significant, as input parsing is a key attack vector, and vulnerabilities related to HTTP parsing have been documented in all widely-used web servers.</jats:p
    corecore