
LMS-Verify: Abstraction without Regret
for Verified Systems Programming

Nada Amin∗ Tiark Rompf †

∗EPFL: {first.last}@epfl.ch
†Purdue University: {first}@purdue.edu

Abstract

Performance critical software is almost always developed in C,
as programmers do not trust high-level languages to deliver the
same reliable performance. This is bad because low-level code
in unsafe languages attracts security vulnerabilities and because
development is far less productive, with PL advances mostly lost on
programmers operating under tight performance constraints. High-
level languages provide memory safety out of the box, but they are
deemed too slow and unpredictable for serious system software.

Recent years have seen a surge in staging and generative pro-
gramming: the key idea is to use high-level languages and their ab-
straction power as glorified macro systems to compose code frag-
ments in first-order, potentially domain-specific, intermediate lan-
guages, from which fast C can be emitted. But what about secu-
rity? Since the end result is still C code, the safety guarantees of
the high-level host language are lost.

In this paper, we extend this generative approach to emit ACSL
specifications along with C code. We demonstrate that staging
achieves “abstraction without regret” for verification: we show
how high-level programming models, in particular higher-order
composable contracts from dynamic languages, can be used at
generation time to compose and generate first-order specifications
that can be statically checked by existing tools. We also show
how type classes can automatically attach invariants to data types,
reducing the need for repetitive manual annotations.

We evaluate our system on several case studies that varyingly
exercise verification of memory safety, overflow safety, and func-
tional correctness. We feature an HTTP parser that is (1) fast (2)
high-level: implemented using staged parser combinators (3) se-
cure: with verified memory safety. This result is significant, as input
parsing is a key attack vector, and vulnerabilities related to HTTP
parsing have been documented in all widely-used web servers.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords contracts, blame, memory safety, Frama-C, LMS,
DSLs, verification, security

1. Introduction

How should we build systems that are performant, secure, and
correct? Today, systems-level software such as network stacks,
databases, and control code in embedded devices is almost always
developed in C. This is bad, for at least two reasons. First, develop-
ment is far less agile and productive than in higher level languages,
and second, low-level code in unsafe languages invites security vul-
nerabilities.

High-level languages, on the other hand, rule out entire classes
of vulnerabilities through built-in memory safety guarantees, and
many of them provide elaborate mechanisms for programming with
contracts, which enforce user-defined specifications at runtime. But
while implementations of high-level languages have come a long
way, programmers cannot trust them to deliver the same reliable
performance as handwritten C code. Contract monitoring at run-
time, in particular, can have prohibitive overhead [80, 87]. As a
consequence, PL advances are mostly lost on programmers oper-
ating under tight performance constraints. Sound static verification
of general-purpose C code is possible, but has an extraordinary cost
in terms of user annotations, and is thus rarely done in practice. But
tools are advancing fast, and formal verification is on the verge of
becoming practical for larger classes of software.

Motivated by the apparent trade-off between productivity and
performance, researchers have argued [71] for a rethinking of the
role of high-level languages in performance critical code, with the
goal of allowing developers to leverage high-level programming
abstractions without the hefty price in performance. The shift in
perspective that enables this vision of “abstraction without regret”
is a properly executed form of generative programming: instead of
running the whole system in a high-level managed language run-
time, the abstraction power of high-level languages can be focused
on generating and composing pieces of low-level code.

Generative programming has proven successful for numerical
kernels such as FFTs [61], for DSLs in big-data processing [13], but
also in domains like database query engines [47], and parsers for
communication protocols [43]. In these traditional strongholds of
low-level programming, generative programming has largely lived
up to its promise: programmers reap the benefits of programming
in a high-level language without the low-level language drawbacks.

However, previous work has only looked at productivity bene-
fits, not at security and correctness. Since low-level code is still be-
ing generated, the safety guarantees usually associated with high-
level languages (e.g. memory safety) do not carry over. And what
about functional correctness? We have to trust the high-level code
and the generator, either or both of which might contain bugs.

The main contribution of this paper is to show that “abstrac-
tion without regret” holds for security and verification as it does for
performance. We demonstrate how generative programming frame-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

POPL’17, January 18–20, 2017, Paris, France
ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009867

845

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/288347150?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

works can be extended to emit low-level code that can be formally
verified using existing C-level verification tools. For this, we pro-
vide a contract API to specify user-defined assertions as well as
pre- and post-conditions. Since we are working in a metaprogram-
ming environment, this facility effectively enables programming
with higher-order composable contracts at generation time. But un-
like contract systems in dynamic languages, our contracts result in
first-order assertions in the generated code. These can be statically
checked and never lead to any runtime overhead.

While verification tools for C have come a long way, they still
require an inordinate amount of annotations to verify even small
programs. Fortunately we can capitalize on the fact that we are
constructing program pieces from within a meta-language again.
By not generating target code directly but going through one or
more domain-specific intermediate languages, we can restrict the
programming model and include e.g. effect and aliasing informa-
tion in the IR. From such an enriched IR, we show that we can
generate a large subset of the required annotations such as loop in-
variants and separation properties automatically. This automation
proves vital in reducing the annotation burden for the programmer.

Finally, generative programming does not need to be an all-or-
nothing approach. It is easy to specify boundary APIs and generate
only critical parts of a system, while other parts are written by
hand. This is a key reason why it is attractive to target standardized
specification languages such as ACSL (ANSI/ISO C Specification
Language) [7].

In short, we show that generative programming is useful not
just for performance, but also for verification. In our approach, we
generate not just low-level code (e.g. C), but also low-level specs
(e.g. ACSL annotations), so that the output can be verified (e.g. to
be memory safe) by an independent tool (e.g. Frama-C). We make
the following contributions:
• We review how generative programming enables “abstrac-

tion without regret” for high-performance and low-level code,
stressing the key insights: (1) we can use abstractions such as
higher-order functions, objects, type classes, etc. at generation
time without incurring any cost at runtime, (2) we can use the
meta-language type system to enforce certain desired restric-
tions on the generated code, in particular that functions and
mutable variables behave in a second-class way (Section 2).

• We extend the programming model with higher-order, compos-
able, contracts. Since we generate only top-level functions with
first-order code, i.e. inlined or named function applications, we
are able to (1) statically check the contracts in the low-level
code, including the higher-order pieces, and (2) reliably assign
“blame” in this generative setting (Section 3).

• We apply generative programming to compose not just code
fragments, but also contracts and specifications. We show how
to further alleviate the annotation burden by (1) associating
invariants to data types via type classes, (2) generating both
code and specification logic from the same high-level source,
(3) inferring loop and separation properties from the IR, and (4)
through custom domain-specific loop constructs (Section 4).

• We evaluate our system on several case studies that exercise
memory safety, overflow safety, and functional correctness, in-
cluding an HTTP parser that is (1) fast, (2) high-level: imple-
mented using staged parser combinators, (3) secure: with veri-
fied memory safety. This result is significant, as input parsing is
a key attack vector, and vulnerabilities related to HTTP parsing
have been found in all widely-used web servers (Section 5).

Section 6 provides a broader perspective, and Section 7 surveys re-
lated work. Our evaluation suggests that the usual patterns of gener-
ative programming (e.g. generic instantiation, turning an interpreter
into a compiler) scale surprisingly well to verification.

class Vec[T:Iso](val a: Pointer[T], val n: Rep[Int]) {

def apply(i: Rep[Int]) = a(i)

def valid = n==0 || (n>0 && a.valid(0 until n))

def length = n

}

implicit def vecIso[T:Inv:Iso] =

explode_struct("vec_" + key[T],

{x: Vec[T] => (x.a, x.n)},

{x: (Pointer[T],Rep[Int]) => new Vec(x._1, x._2)}

)

implicit def vecInv[T:Inv] = invariant[Vec[T]] { x =>

x.valid && ((0 until x.n) forall {i => x(i).valid})

}

implicit def vecEq[T:Eq:Iso] = equality[Vec[T]] { (x, y) =>

x.n == y.n && ((0 until x.n) forall {i => x(i) deep_equal y(i)})

}

// Instantiate equality spec + computation for specific type

implicitly[Eq[Vec[Vec[Rep[Int]]]]]

Figure 1. Higher-order generic source in Scala, generating low-
level annotated code of Figure 2.

/*@

predicate inv_vec_Int(int* a, int n) = (n==0) || ((n>0) && \valid(a+(0..n1)));

predicate eq_vec_Int(int* a1, int n1, int* a2, int n2) =

((n1==n2) && (\forall int i; (0<=i<n1) ==> (a1[i]==a2[i]))); */

/*@

requires (inv_vec_Int(a1,n1) && inv_vec_Int(a2,n2));

assigns \nothing;

ensures \result <==> eq_vec_Int(a1, n1, a2, n2); */

int eq_vec_Int(int* a1, int n1, int* a2, int n2) {

int x23 = n1 == n2;

int x35;

if (x23) {

int x34 = 1;

/*@

loop invariant (0 <= i <= n1);

loop invariant \forall int j; (0 <= j < i) ==> (a1[j]==a2[j]);

loop assigns i;

loop variant (n1i); */

for (int i = 0; i < n1; i++) {

int x31 = a1[i]; int x32 = a2[i]; int x33 = x31 == x32;

if (!x33) { x34 = 0; break; }

}

x35 = x34;

} else { x35 = 0/*false*/; }

return x35;

}

/*@

predicate inv_vec_vec_Int(int** a, int* an, int n) = (((n==0) || ((n>0) &&

(\valid(a+(0..n1)) && \valid(an+(0..n1))))) &&

(\forall int i; (0<=i<n) ==> inv_vec_Int(a[i],an[i])));

predicate eq_vec_vec_Int(int** a1, int* an1, int n1,

int** a2, int* an2, int n2) = ((n1==n2) && (\forall int i; (0<=i<n1) ==>

eq_vec_Int(a1[i],an1[i],a2[i],an2[i]))); */

/*@

requires (inv_vec_vec_Int(a1,an1,n1) && inv_vec_vec_Int(a2,an2,n2));

assigns \nothing;

ensures \result <==> eq_vec_vec_Int(a1, an1, n1, a2, an2, n2); */

int eq_vec_vec_Int(int** a1, int* an1, int n1, int** a2, int* an2, int n2) {

int x72 = n1 == n2;

int x88;

if (x72) {

int x87 = 1;

/*@

loop invariant (0 <= i <= n1);

loop invariant \forall int j; (0 <= j < i) ==>

eq_vec_Int(a1[j],an1[j],a2[j],an2[j]);

loop assigns i;

loop variant (n1i); */

for (int i = 0; i < n1; i++) {

int *x82 = a1[i]; int x83 = an1[i]; int *x84 = a2[i]; int x85 = an2[i];

int x86 = eq_vec_Int(x82,x83,x84,x85);

if (!x86) { x87 = 0; break; }

}

x88 = x87;

} else { x88 = 0/*false*/; }

return x88;

}

Figure 2. Emitted low-level first-order code in C with specifica-
tions in ACSL, generated from high-level generic source of Fig-
ure 1, modulo some local variable renaming for clarity.

846

vector of integers
int* element array
int length
vector of vector of integers
int** element array by outer then inner index
int* array for inner length by outer index
int length (of outer)

Figure 3. Representation of vectors in low-level code of Figure 2.
Choice here explodes source fields (item pointer, length) into vari-
ables, and flattens nested structures akin to “struct of arrays”.

As a teaser, consider the source and target code shown in Fig-
ures 1 and 2, respectively (it is not necessary to understand it in de-
tail yet; many parts of it will be explained in Section 2). Based on a
generic definition of a Vec class, we define generic type classes that
define data layout, data invariants, and equality predicates. When
we instantiate these generic templates to a concrete type, we will
emit the corresponding specialized first-order C code – complete
with ACSL specifications. Here in the generator, we ask for the
equality instance for a vector of vectors of integers. In the gen-
erated code, we get the data invariants (as ACSL logic) and the
equality predicates (as both C code and ACSL logic), for vector
of integers and vector of vectors of integers, where the latter uses
the former internally. The specifications gracefully handle complex
internal data layouts: In the low-level code, a vector of integers is
represented by two separate C values (element data and length),
and a vector of vectors of integers by three, as outlined in Figure 3.

2. High-Level Low-Level Programming

How can we do low-level programming in a high-level language?
The key idea of generative programming is to use the high-level
language as a glorified macro system to compose fragments of low-
level code in a (potentially domain-specific) intermediate language
(IR). From this IR, low-level efficient C code can be emitted,
possibly after further optimizations.

C as an Embedded DSL in Scala We base our development on
Scala and LMS (Lightweight Modular Staging) [72]. The main idea
of LMS is to provide a type-based embedding of the IR into the host
language (Scala). A special type constructor Rep[T] is used to mark
staged expression of type T. In other words, a value of type Rep[Int]
or Rep[String] denotes a representation of an Int or String value
in generated code.

Scala dialects provide flexible forms of overloading that extend
to language built-ins like conditionals [70]. An expression such as
if (a < b) a else b

Will be desugared into method calls:
__ifThenElse(a.<(b), a, b)

And with LMS, two overloaded versions exist:
def __ifThenElse[T](c: Boolean, a: => T, b: => T): T

def __ifThenElse[T](c: Rep[Boolean], a: =>Rep[T], b: =>Rep[T]):Rep[T])

The Scala compiler’s local type inference essentially performs a lo-
cal binding-time analysis to determine which parts of an expression
are evaluated right away and which parts are staged, becoming part
of the generated IR.

To continue our example, if either a or b are Rep[Int] values,
a < b will have type Rep[Boolean]. In this case a conditional will
be generated. If a and b are of type Int, expression a < b will be of
type Boolean and one of the conditional branches will be picked at
staging (i.e. IR generation) time.

In traditional multi-stage programming approaches, staging is
often homogeneous: the host language and the target language of
code generation is the same. Here, we are mostly interested in gen-
erating C code from Scala, so we are dealing with a heterogeneous

embedding. This gives us some freedom to provide types that have
no direct meta-language equivalent. For example, for low-level sys-
tems programming we might need to deal with pointers, and add a
corresponding Pointer[T] type to our embedding. In the same vein,
we can add facilities like malloc and free for manual memory man-
agement, which do not have an equivalent in Scala.

In our setting, the target language is more restricted than the
meta-language, as C does not provide features like closures, pat-
tern matching, or managed memory. For this reason, and because
analysis and verification of higher-order constructs is fundamen-
tally more difficult, we want to generate mostly first-order entities.

Our IR is designed to be unparsed to C almost directly. Com-
pared to C, we remove function pointers, and the ability to take the
address of a value x via &x. These restrictions enable us to maintain
some useful separation properties in the IR by design. We add sup-
port for nested functions, which requires a lambda lifting transform
before unparsing (see Section 2.3).

2.1 Deep Linguistic Reuse

Working in a generative setting, the first key insight is that we
can use arbitrary facilities of the meta-language at generation time,
without any overhead in the generated code.

Classes and Objects On top of the primitives provided by the IR,
we can, e.g., define a data structure for vectors, using high-level
object-oriented abstractions in the meta-language for composition-
ality, similar to what we did in Figure 1:
class Vec[T](val a: Rep[Pointer[T]], val n: Rep[Int]) {

def apply(i: Rep[Int]) = a(i); def length = n }

In the generated code, all the abstraction overhead of classes and
methods will be stripped away, leaving just the low-level pointer
manipulations.

Shallow Functions We have seen primitive operations like < and
conditionals above. But how can we effectively work with functions
in generative programming? We first note that we can transparently
use meta-language functions for composition:
def min(a: Rep[Int], b: Rep[Int]) =

if (a < b) a else b

In this case, function min is a meta-language, i.e. staging-time,
function of type Rep[A]=>Rep[B]. Such a function will be inlined
when called, without leaving a trace of the function abstraction in
the generated code.

Since such functions are purely staging-time abstractions, we
can freely define higher-order functions, too, for example to tra-
verse a Vec, and to compute aggregates:
def infix_foreach[T](xs: Vec[T])(f: Rep[T]=>Rep[Unit]) =

for (i < 0 until xs.length) f(xs(i))

def infix_fold[T](xs:Vec[T])(z:Rep[T])(f:(Rep[T],Rep[T])=>Rep[T]) = {

var acc = z; xs.foreach(x => acc = f(acc,x)); acc }

If we now call:
val xs = ... // type Vec[Int]

xs.fold(Int.MaxValue)(min)

Then we will generate the following C code:
int* x0 = ...; // xs.buf

int x1 = ...; // xs.size

int x2 = INT_MAX; // acc

for (int x3; x3 < x1; x3++) {

int x4 = x2;

int x5 = x0[x3];

int x6;

if (x4 < x5) x6 = x4;

else x6 = x5;

x2 = x6

}

As we can see, the generated code is completely first-order. There
are no functions present, and much less higher-order ones.

847

Generic Programming with Type Classes Most likely, we will
reach a point where we would like to extend the functionality of
Vec objects further. Perhaps we would like to compare two Vecs for
equality. This requires that the elements of a Vec are comparable,
too: a prime example of generic programming, which we can solve
elegantly using type classes [90].

We begin by defining the type class signature, with a Rep[Boolean]
result for the comparison:
trait Eq[T] { def eq(a: T, b: T): Rep[Boolean] }

And we provide a helper method to construct instances from a given
comparison function:
def equality[T](f: (T, T) => Rep[Boolean]) = new Eq[T] {

def eq(a: T, b: T) = f(a,b)

}

We also add an implicit enrichment
implicit class EqOps[T:Eq](a: T) {

def deep_equal(b: T): Rep[Boolean] = implicitly[Eq[T]].eq(a,b)

}

which enables us to call a deep_equal b when a and b are objects of
a type T, for which a type class instance Eq[T] exists.

To instantiate equality for Vecs, we need to create the corre-
sponding Eq instance and make it available as implicit. Note the
use of deep_equal to compare the elements of the Vec:
implicit def vecEq[T:Eq] = equality[Vec[T]] { (x, y) =>

x.n == y.n && ((0 until x.n) forall {i => x(i) deep_equal y(i)}) }

Interestingly, type classes can be used without any modification
in a generative setting. The key insight is that type classes come
with a natural stage distinction, given by the decoupling of data
(which, in our case is staged) and behaviour (executed at staging
time). Thus, we can reuse the host language once more and get this
powerful pattern for free in staged code.

2.2 First-Class Now, Second-Class Later

The second key insight is that, through clever programming pat-
terns, we can leverage the meta-language type system to ensure
key desirable restrictions on generated code.

Higher-order programming and first-class entities are funda-
mentally linked. In general, language features are said to be first-
class if they can be used without restrictions [78], and second-class
if they can be used only in certain ways but not others. For example,
second-class functions can only be called, but not stored in muta-
ble variables or returned from other functions. Second-class muta-
ble variables can be read and written, but cannot be stored in other
variables. On the flip side, first-order code can use only second-
class patterns while higher-order code uses first-class patterns. For
example, first-order functions can use only second-class functions,
while higher-order functions use first-class functions.

An extremely useful design pattern in generative programming
is that second-class constructs from the target language may be
abstracted over and used as first-class objects at generation time.
First-class objects in generated code must be of type Rep[T], but
we are free to provide additional abstractions that use Rep types
internally but make them accessible only through a purely second-
class API. We will see several examples below.

Deep Functions Above, we have discussed shallow functions,
which only exist at staging time, and can be effectively used as
macros, to achieve the effect of inlining. But of course inlining
is not always the desired choice. Sometimes we want to generate
actual function definitions. A truly first-class function would have
type Rep[A=>B]. But since there is no C equivalent, it would not
make much sense to support such abstractions. Instead, we intro-
duce an operator fundef that creates a function definition, but its
return type is again Rep[A]=>Rep[B]. This means that the defined
function can only be called, but it cannot be referenced as a first-

class value in the generated code. Thus, fundef is an abstraction to
create second-class functions, with restricted usage patterns.

If we change the code above to use fundef:
val min = fundef("min") { (a: Rep[Int], b: Rep[Int]) =>

if (a < b) a else b

}

val main = fundef("main") { (xs: Vec[Int]) =>

xs.fold(Int.MaxValue)(min)

}

Then we will generate the following C code:
int min(int x4, int x5) {

int x6;

if (x4 < x5) x6 = x4; else x6 = x5;

return x6;

}

int main(int *x0, int x1) { // x0 = xs.buf, x1 = xs.size

int x2 = INT_MAX;

for (int x3; x3 < x1; x3++) {

int x4 = x2;

int x5 = x0[x3];

int x6 = min(x4,x5);

x2 = x6

}

return x2;

}

Mutable Variables and Buffers Similar considerations as with
functions apply when working with mutable state. In many cases
we want to work with local variables in the generated code, but treat
them also as first-class staging-time objects. The type of variables
we use is plain Var[T], i.e. not a Rep type. But read and update
methods on Var objects take and return Rep types, providing a
second-class staging-time abstraction over generated code.

Nevertheless, we can treat variables as first-class entities while
generating code. In particular, we can emit a flexible amount of
local variables, based on some input data. For example,
List(1,2,3).map(x => var_new(x)) //: List[Var[Int]]

generates code:
int x1 = 1; int x2 = 2; int x3 = 3;

Or we can define staging-time functions that take variables as ar-
guments, enabling programming patterns similar to ML-style first-
class references:
def swap[T](a: Var[T], b: Var[T]) = {

val t: Rep[T] = a

a = b; b = t

}

The key difference to first-class references however is that their
second-class nature bounds the lifetime of variables in the gener-
ated code. As fundef’s type signature does not permit returning a
Var[T] value, its lifetime cannot exceed its meta-language scope.

We can generalize from individual variables to second-class
Buffer[T] objects, which leads to a simple but effective form of
region-based memory policy.

Controlling Object Representation with Type Classes Consider
again our Vec example. Right now Vec objects are second-class, like
variables, so they cannot be arguments or return values of deep
functions. This is rather limiting, and we might also want to nest
Vecs, but we cannot: due to their second-class status, we can only
put Rep values into Vecs.

To make Vecs first-class, type classes come to the rescue again.
Based on ideas from polytypic programming [41, 83, 77] we intro-
duce a type class Iso[T], which defines a mapping between Vec and
the Rep types it consists of:
trait Iso[T] {

def id: String

def toRepList(x:T): List[Rep[_]]

def fromRepList(xs: List[Rep[_]]): T

}

848

We create the corresponding instance for Vec as follows:
implicit def vecIso[T:Iso]: Iso[Vec[T]] =

explode_struct("vec_" + key[T],

{x: Vec[T] => (x.a, x.n)},

{x: (Pointer[T],Rep[Int]) => new Vec(x._1, x._2)}

)

To go one step further and allow nesting of Vec objects, we
need to generalize our low-level representation of pointers from
Rep[Pointer[T]] to Pointer[T], with a suitable Iso instance for
Pointer[T]. There are different options how such nested data can
be stored. The most common variant would be as array of structs
(AoS), but for performance, it is often desired to transpose the lay-
out and store data as struct of arrays (SoA). The Iso implementa-
tion can pick either, but using explode_struct we settle for SoA as
illustrated in Figure 3, in the code shown in Figure 2.

The internal definition of fundef requires an Iso instance for the
argument and return type, in order to generate the proper function
signatures. A first approximation of its signature would be:
def fundef[A:Iso,B:Iso](f: A => B): A => B

However we can take this pattern further and introduce a dis-
tinction between argument and return types. This is useful to ensure
a “downward funarg” policy for certain types like stack-allocated
buffers, which guarantees that object created inside a function can-
not escape this scope. Thus, the actual signature of fundef is:
def fundef[A:DemiIso,B:Iso](f: A => B): A => B

Where DemiIso has the same functionality as Iso but serves as a
marker for types like Var or Buffer that can only appear in function
argument but not in return position. We treat Iso as strictly more
general than DemiIso by defining an implicit conversion from Iso to
DemiIso, but for types like Var or Bufferwe only implement DemiIso,
not Iso. This guarantees the desired behavior with respect to stack-
bounded object lifetimes.

To wrap up this section, we highlight the insight that with type
classes, we can control the shape of data (as in normal program-
ming) but also the shape of generated code. In particular we can
enable or restrict values of specific types to be nested, or to appear
in function argument or return types.

2.3 IR Transformations and Unparsing to C

At the IR level, we can implement various analyses and optimiza-
tions before we generate target code. Unparsing to C is straightfor-
ward, since the IR is already low-level and designed to map to C in
a direct way. One aspect still requires further attention:

Lambda Lifting Since Scala supports nested functions, invoca-
tions of fundef may also be nested, and refer to objects, including
Vars, from enclosing scopes:
var a = ... // Var[Int]

val f = fundef { x: Rep[Int] => a += x }

f(2)

Of course, C does not support nested functions, so we have to apply
a lambda lifting transformation on the IR level before emitting C.
This lambda lifting pass takes variables into account and supports
non-local variables by passing pointers. For the input above, the
generated code will look (roughly) like this, with a pointer to
variable a added to function f’s argument list.
int f(int *a, int x) { *a += x; }

int a = ...

f(&a,2)

Passing a pointer to variable a to function f is safe, because the
variable can never escape its defining scope, and because we do not
support function pointers as first-class entities. Similarly, variables
cannot be stored in other variables, and they cannot be returned
from functions. Together, these constraints maintain our stack-
bounded lifetime guarantees for second-class values.

2.4 Problems

All in all, generative programming provides a valuable approach
to raise the level of abstraction in low-level systems development.
Programmers obtain some nice high-level guarantees, including
type safety, and certain properties about scoping, for example that
variables and pointers do not escape. But how reliable are those
guarantees? Since we are still generating low-level C code, we have
to take into account bugs and inconsistencies at all levels of the
stack.

First, even though we are working in a safe high-level language,
we are giving up built-in properties like memory safety the very
moment we decide to generate C code. We are no longer protected
against out-of-bounds memory accesses, buffer overflows, or other
kinds of errors that are all too often the source of security vulner-
abilities. Of course it would be possible to generate appropriate
checks, but the associated performance overhead would most likely
not be acceptable.

Second, we cannot trust the generator to do the right thing, es-
pecially if one or more levels of IRs are involved in the generation.
A concrete example we have come to know about was the data
loading code in a database query engine built using LMS. While
the data field abstraction was properly implemented to work with
fixed-length strings, programmers had not accounted for the addi-
tional NULL terminator that is present in C strings, but not in the
high-level abstraction.

Third, we do not know if the program itself does the right
thing, since we have no principled way of incorporating verification
of functional correctness properties into our program generators,
except perhaps by generating costly runtime checks.

The central thrust of this paper is to show that these shortcom-
ings can be fixed in an elegant and principled way, by generating
C code along with specifications that can be automatically verified
by independent tools. Our development uses Frama-C [21] and the
ANSI C Specification Language (ACSL) [7] but other tools like
VeriFast [39] would be viable alternatives.

3. Contracts

Specifications and in particular function contracts play a key role
in program verification. The key idea of LMS-Verify, our genera-
tive programming system geared towards verifiable code, is to not
only generate straight executable C code, but generate contracts
and assertions alongside. These could be checked dynamically, but
we seek full static verification in order to eliminate all possible
runtime overhead. To achieve static verification, we need to gener-
ate enough assertions, loop invariants, and function pre- and post-
conditions so that existing verification tools are able to reason about
every possible behavior of a certain piece of generated code.

Contracts for Deep Functions In their simplest model, function
contracts consist of pre- and post-conditions for a given function
definition. We can add corresponding functionality to fundef:
val inswap = fundef { (p: Rep[Array[Int]], i: Rep[Int], j: Rep[Int]) =>

// precondition:

requires{valid(p, i) && valid(p, j)}

// body code:

val tmp = p(i)

p(i) = p(j)

p(j) = tmp

// postcondition:

ensures{res => p(i)==old(p(j)) && p(j)==old(p(i))}

}

The pre- and post-conditions are just regular staged expressions
(type Rep[Boolean]), but since they occur in specification context
they will not generate executable C code but ACSL annotations:

849

/*@

requires (\valid(x0+x1) && \valid(x0+x2));

ensures ((x0[x1]==\old(x0[x2])) && (x0[x2]==\old(x0[x1])));

assigns x0[x1], x0[x2];

*/

void inswap(int* x0, int x1, int x2) {

int x4 = x0[x1];

int x5 = x0[x2];

x0[x1] = x5;

x0[x2] = x4;

}

While in general most kinds of expressions can either generate C or
ACSL code there are certain exceptions: side-effecting statements
can only generate C code, and some expressions like old and valid

are only available in specifications. Using such an expression in an
incompatible context will result in an error at staging time.

Shallow Contracts Some dynamic languages such as Racket [29]
offer elaborate APIs for higher-order composable contracts [30]. It
turns out that we can use the same pattern we used for working
with higher-order functions at generation time again for contracts:
we use meta-language abstractions to compose computations that
will produce the right assertions in the generated code.

In essence, adding pre- and post-conditions to a function just
corresponds to eta-expansion, inserting an appropriate check before
or after the function is executed. However, just a simple check is not
enough. Since pre- and post-conditions form a contract between
caller and callee of a functions, we would like to make sure that we
can blame the right party for any failure.

Blame Assignment To assign blame for contract violations, we
use Scala’s implicit SourceContext facility [70]. Whenever the Scala
compiler encounters a method call that requires a SourceContext

argument maked as implicit, the compiler will synthesize such an
object and initialize it with the source file and line number at the
method call site.
def getPos(implicit pos: SourceContext) = pos

getPos() // automatically create SourceContext object

We can use this approach to define our own class of function
objects FuncShallow that will store the source location of their defi-
nition as well as obtain the caller’s source location when invoked.
trait FuncShallow[A,B] { o =>

val calleePos: SourceContext

def apply(x: A)(implicit callerPos: SourceContext): B

}

Base on this function class, we add contracts via pre- and post-
conditions.

Contracts are added by eta-expanding and guarding pre/post
conditions with an assert, blaming callerPos or calleePos respec-
tively for any contract violations that might happen.
def shallow[A,B](f: A => B)(implicit pos: SourceContext) =

new FuncShallow[A,B] {

val calleePos = pos

def apply(x: A)(implicit callerPos: SourceContext): B = f(x)

}

We implement pre-conditions as follows:
def require(pre: A => Rep[Boolean]) = new FuncShallow[A,B] {

val calleePos = o.calleePos

def apply(x: A)(implicit callerPos: SourceContext): B = {

// blame precondition on caller

asserts(pre(x))(callerPos)

o.apply(x)(callerPos)

}

}

Post-conditions using ensures are analogous to the implementation
for pre-conditions but they blame the callee instead of the caller.
Note that the contract implementations use an asserts statement
that looks very similar to a normal runtime check, but instead it
will generate an ACSL assertion in the output C file. For blame

assignment, we emit source information in the generated code
using #line file directives (more below).

Higher-Order Contracts Straightforward contracts have their
limits, even though we can make them tremendously more use-
ful by being able to generate assertions instead of writing them all
by hand. A key limitation is that we cannot easily state properties
about functions that are passed as arguments or returned from other
functions.

The idea of higher-order contracts is to use eta-expansion again,
and insert code before and after the function, which will inspect
its arguments and results. In the implementation, nested contracts
are linked to their parents, and the blame assignment flips between
caller and callee whenever we enter a pre-condition, i.e. increase
the depth to the left of a function arrow. This approach follows ex-
actly the standard algorithm for blame assignment in dynamically
monitored contracts [30].

Here is an example, taken from [59], that transforms a function
from even to even numbers into a function from odd to odd num-
bers:
val e2o = shallow { f => shallow { x => f(x+1)1 } }

.requiring { f => f.require(x => even(x)).ensure(x => r => even(r)) }

.ensuring { f => f.require(x => odd(x)).ensure(x => r => odd(r)) }

Note the difference between require and requiring: the former
takes as argument a predicate of type A => Rep[Boolean] and asserts
it before calling the wrapped function. The latter (requiring) takes
as argument a function A => A and uses it to merely modify the
argument of the wrapped function (adding nested contracts being
the prime use case). The same applies to ensures and ensuring.

The example can also be written in shorter form as:
val e2o = shallow { f => shallow { x => f(x+1)1 } } // line 37

.requiring { f => f.contract(even,even) } // 38

.ensuring { f => f.contract(odd,odd) } // 39

And we might use e2o as follows:
val double = shallow { x: Rep[Int] => 2 * x } // 42

val f2 = e2o(double) // 43

f2(x/*...defined in elided outer scope*/) // 44

Below is the generated code, with line numbers for every expres-
sion. The #line directives in front of asserts lead the verifier to
report contract violations in the correct source locations, according
to blame assignment:

#line 44 "BlameTests.scala"

//@assert ((x0%2)==1);

#line 37 "BlameTests.scala"

int x6 = x0 + 1;

#line 37 "BlameTests.scala"

//@assert ((x6%2)==0);

#line 42 "BlameTests.scala"

int x11 = 2 * x6;

#line 43 "BlameTests.scala"

//@assert ((x11%2)==0);

#line 37 "BlameTests.scala"

int x16 = x11 1;

#line 37 "BlameTests.scala"

//@assert ((x16%2)==1);

Here, line 37 is the definition of e2o, and lines 42-44 are the
three lines of its use. We can see that all parts of the contract,
including the higher-order ones, have become first-order assertions.
As to blame assignment, we can see that blame correctly switches
between the function definition and the call site, blaming the call
e2o(double) for any failures of double to return an even number, but
blaming the body of e2o for any failures of invoking f, and therefore
double, with an even number.

Mixing Deep and Shallow Contracts We have looked at con-
tracts for “deep” functions, which are part of the fundef API, and
“shallow” functions, which are generation-time macros.

850

Since deep functions take Rep arguments, or require an Iso in-
stance, we do not have to deal with passing a shallow function as an
argument to a deep function. However, one can pass a deep function
as parameter to a shallow function. If the shallow function imposes
any contract on its function parameter, then the deep function will
be wrapped with code that performs the corresponding checks.

Inductive Predicates Similar to shallow/deep functions on the C
level, we have the same choice for assertions. Either we can abstract
at staging time and inline, or we can generate definitions in ACSL.

We already saw ACSL predicates in the context of specifying
invariants and deep equality (Figure 2). For deep equality, we saw
that we can generate both C code and a corresponding ACSL pred-
icate from the same Scala source. Here is another small example:
predicate("is_pos", { x: Rep[Int] => x > 0 })

This source generates an ACSL predicate and C code that imple-
ments the logic, as ensured by the post-condition:
//@ predicate is_pos(int x0) = (x0>0);

/*@

assigns \nothing;

ensures \result <==> is_pos(x0);

*/

int is_pos(int x0) {

int x2 = x0 > 0;

return x2;

}

This predicate is_pos can now be used as part of any other spec or
code, and will refer to the generated ACSL or C definition, which
helps in making generated specifications more readable.

ACSL also supports inductive definitions, as a set of cases
with the usual least fixed point semantics. We use this facility for
example in our case study on sorting, to specify that the sorted
output is a permutation of the input (see Section 5.1).

Properties of Contract Embedding Our generative embedding of
contracts achieves much of the expressiveness of state-of-the-art
dynamic contract systems [30]. In particular, contracts are com-
posable, higher-order, dependent (they can express dependent rela-
tionships between the domain and range), potentially recursive, and
they support blame assignment. Our embedding is heavily inspired
by soft contract verification [58], but goes beyond it in guaranteeing
that all dynamic contract checks are eliminated. Like TreatJS [44],
our contracts guarantee non-interference of contracts with normal
program code: we generate assertions in a specialized, side-effect-
free, language. We control precisely what is necessary to compute
only for verification vs for normal program execution. Computa-
tions only used in assertions are not emitted as part of the C code.
Thus, adding or deleting contracts has no effect on the computation.

4. Generative Verification

Through contracts, we have already seen some of the power of
the generative approach extended to verification. Here, we delve
deeper into generative patterns for verification that further alleviate
the annotation burden.

Type Classes for Invariants Recall from Section 2.2 that the
type class Iso controls object representation. An important insight
is that type classes can be used not only for shaping code, but
also specifications. In particular, they can fill in parts of contracts
automatically.

We define a core type class Inv for representation invariants:
trait Inv[T] { def valid(x:T): Rep[Boolean] }

which we instantiate for Vec[T] as follows:
implicit def vecInv[T:Inv] = invariant[Vec[T]] { x =>

x.a.valid(0 until x.n) && ((0 until x.n) forall {i => x(i).valid}) }

The helper function invariant acts as default constructor analogous
to equality for Eq as in Section 2.1. The given Vec[T] invariant

requires that the data pointer a is valid for the full length n, and
that the nested invariant for T, specified by Inv[T], holds for all
elements of the vector.

The type classes Inv and Iso co-operate mutually and with
fundef so that representation invariants of parameters and return
values are enforced in pre- and post-conditions of code functions.
Type classes compose and interact transitively as we would expect,
and as exemplified by the invariants for T and Vec[T] above. Further-
more, in the generated code for the teaser (Figure 2), the equality
predicates require representation invariants in their C implementa-
tions (though not their ACSL definition, deliberately).

Type classes provide a discipline for structuring genericity –
relying on parametricity by default and explicit functionality as
needed – well-suited for composing and specializing specifications,
and for automating simple contracts, cutting down on repetitive
manual annotations.
Code and Specifications from a Single Source Back in our
teaser example (Figures 1 and 2), the definition of equality gen-
erates both an ACSL logic predicate and a C implementation. An-
other example was is_pos in Section 3. Thanks to a single reified
IR, we can generate either target from a single IR expression, de-
pending on the context (spec vs code). Thus, we get a big benefit in
terms of DRY (“Don’t Repeat Yourself”). But how can we be sure
that the generated code and the spec actually match? In the gener-
ated code in Figure 2, the post-conditions of the eq_vec_ functions
ensure that the specification is actually implemented.

It is important to stress that we cannot always turn code into
specs. For example, side-effecting code has no logic counterpart.
Thus we need a way to degrade gracefully. In the case of Eq, the
earlier definition from Section 2.1 is refined to:
trait Eq { def eq(a,b); def eq_spec(a,b) = eq(a,b) }

Method eq_spec is what is used inside specifications. It defaults to
the same expression that generates code, but it can be overridden to
formulate the spec in another way, if it cannot be directly generated
from the code. For example, the code might use caching over the
pure eq_spec – a possible pattern to abstract over again.

The expression (0 until n).forall {i => ...} is another inter-
esting case where we capitalize on the benefits of working with an
IR instead of generating target code directly. If this expression is
used as part of a spec, it will result in an ACSL forall expression:
// \forall i; 0 <= i && i < n ==> ...

But if it is used as part of executable code, then an iterative al-
gorithm is generated that enumerates the range and computes the
predicate. Another way to look at this is that for predicates that
fit the given pattern, we automatically synthesize decision proce-
dures. The take-away here is that a functional programming style
lends itself to generating both spec and code from the same source
expressions since it can be read both logically and computationally.
Deriving Specs from the IR Loop properties and aliasing in-
variants required for low-level verification (invariant, variant,
assigns, separated, ...) are particularly tedious. But in many cases
the information we need is already captured as part of internal ef-
fect and aliasing information by LMS, and we “just” need to expose
it as ACSL annotations.

For most practical purposes, performance-oriented low-level
code does not make arbitrary memory accesses but follows some
reliable patterns. We introduce a.mutable as a specification internal
to LMS-Verify, for a function argument a. The meaning is that
mutable function arguments are separate from one another, and
separate from immutable data.
def zero = fundef("zero") { a: Vec[Rep[Int]] =>

requires { a.mutable }

for (i < 0 until a.n) a(i) = 0

ensures { res => (0 until a.n).forall { i => a(i) = 0 }}

}

851

On the IR level, we track modifications, and report any violation
of these separation properties as staging-time error. The generated
post-conditions ensure that the separation invariants are preserved.
The internal implementation is only a slight extension of the pre-
existing LMS effect system [69], which already keeps track of cer-
tain sharing and separation properties for the purpose of optimiza-
tions. We also use information from these mutable annotations to
generate loop invariants with ACSL assigns annotations.

Domain-Specific Loop Constructs Of course it is unreason-
able to expect that we can infer everything we need for all po-
tential use cases. Another powerful pattern to programmatically
put invariants in the right places is to introduce higher-level
domain-specific abstractions, which combine code, in particu-
lar loop patterns, with respective invariants. In the zero snippet
above, the expression for (i < 0 until a.n) a(i) = 0 desugars
into Range(0,a.n).foreach { i => a(i) = 0 }. The foreach imple-
mentation on Range objects can be seen as such a domain-specific
abstraction. Internally, it is implemented like this:
def foreach(f: Rep[Int] => Rep[Unit]) = {

var i = 0; while (i < n) { loop_invariant(i >= 0 && i < n); f(i) } }

Thus, higher-level abstractions (here, foreach) can automatically
insert specific loop invariants, based on domain knowledge (here,
about i). Together with a.mutable and Inv[Vector[Int]], this loop
invariant is enough to validate the postcondition in method zero.
We will see another example in Section 5.2.

5. Case Studies

We report on four individual case studies:
1. Generic sorting: verify non-trivial properties (e.g. output is in-

place sorted permutation of input) and generate specialized ver-
sions of a generic library parameterized by element data type,
vector data layout, comparator operation. Library generation is
an important use-case for generative programming – see Spi-
ral [61] for example.

2. Linear algebra: alleviate the annotation burden by automatically
inferring loop and data properties from the intermediate repre-
sentation and from higher-level knowledge. We showcase sce-
narios often encountered in DSLs like OptiML [81].

3. Regular expressions: apply the common generative program-
ming pattern of deriving a compiler from an interpreter via
staging. We show that we can co-specialize specifications along
with the interpreter code.

4. Parser combinators: this case study targets a particularly rel-
evant real-world use case: verifying code that processes un-
trusted input. Protocol and data format parsing is one of the
main sources of security vulnerabilities in the wild. We show
that we can write an HTTP parser in a high-level style and gen-
erate low-level fast C code verified to be free of memory and
overflow errors.

We present an overview of the required verification effort in Fig-
ure 4. For each case study, we list the lines of proofs (LoP) vs
lines of code (LoC) in the Scala source, as well as in the gener-
ated C. Note that since we are working in a generative setting, we
can generate many C variants, including specifications, from a sin-
gle Scala source. For some use cases (e.g. sorting) the generator
takes more LoC than a single generated target, but the source LoC
are amortized over multiple generated versions. In other cases (e.g.
HTTP parser) the generated to generator LoC ratio is already high
(≥ 10×) for a single version. For regular expressions, the gener-
ated code size can blow up exponentially as the regular expression
grows in backtracking complexitiy. In general, the LoP to LoC ra-
tio is lower than one might expect in the generated code. This is
mainly due to the fact that all intermediate expressions are named:
each one occupies a separate line in C code, but not in ACSL specs.

module / instance lang. LoP LoC # s.
1. Selection Sort Scala 41 115
verified sorted & in-place permuted

ints by ≤ C 88 26 70 7
ints by ≥ C 88 26 70 7
int pairs by first proj. C 116 43 89 11
int pairs by lex. C 130 52 97 20
int vectors by length C 128 49 109 15
2. Linear Algebra Scala 32 97
verified misc. safe & spec.

matrix +,×, · C 104 51 101 22
member C 23 22 18 2
index where C 26 17 20 3
3. Regular Expressions Scala 3 41
verified memory safe

annotated interpreter C 32 35 72 5
^a C 4 21 2 1
a C 10 39 21 11
a$ $ C 10 41 24 12
ab.*ab C 16 155 104 28
aa* C 16 80 62 13
aa*bb* C 28 192 160 31
aa*bb*cc* C 52 416 356 100
aa*bb*cc*dd* C 100 864 748 320
aa*bb*cc*dd*ee* C 196 1760 1532 1040
aa*bb*cc*dd*ee*ff* C 388 3552 3100 4820
4. HTTP Parser Scala 2 118
staged parser combinators Scala 5 197
verified memory & overflow safe

without chunking C 95 1517 276 27
with chunking C 133 2630 2404 650

Figure 4. Verification effort for case studies: lines of proof/spec-
ification (LoP) & lines of code (LoC) in Scala code generator and
generated C code, which Frama-C verifies using given number of
goals (#) in given seconds (s.).

5.1 Generic Sorting

We write an in-place sort routine – we choose selection sort, though
another in-place algorithm such as insertion sort or even quick sort
would work as well. This case study is inspired by a hand-written
verified sorting function [19], but is considerably more general.
Namely, the code is parameterized on an element type T and on an
instance of the type class Ord[T], which defines an ordering, made
available through the comparison function cmp:
def insort[T:Iso:Ord] = fundef("sort"+key[T]) { a: Vec[T] =>

requires { a.mutable }

val n = a.length

for (i < 0 until (n1)) {

loop_invariant(a.slice(0,i).sorted)

loop_invariant((i > 0) ==> (a.slice(i,n).forall(a(i1) cmp _)))

var jmin = i

// could also express inner loop as: a.slice(i,n).minIndex

for (j < (i+1) until n) {

loop_invariant(a.slice(i,j).forall(a(jmin) cmp _)))

if (a(j) cmp a(jmin)) jmin = j

else asserts(a(jmin) cmp a(j))

}

inswap(a,i,jmin)

}

ensures { res => Sorted(a) && Permut("Old","Post")(a) }

}

The sort routine operates on a generic Vec, representing an
indexed sequence of n elements. We verify that on output, the
sequence is a sorted permutation of what it was on input. The
a.mutable precondition tracks modifications of vector a. The first
post-condition ensures that the sequence is sorted and the second
that the sequence on output is a permutation of the sequence on
input. The first helper is straightforward to define:
def Sorted[T:Iso:Ord](a: Vec[T]) = forall{i: Rep[Int] =>

(0 <= i && i < a.length1) ==> (a(i) cmp a(i+1))}

852

The second one is a bit more involved. First, note that Permut needs
to relate two states of the same data structure. ACSL provides syn-
tax \at(a,Old) and \at(a,Post) for this, which we expose directly
in our programming model. We model permutations in the usual
way as a a combination of zero or more swap operations. Thus, it
is convenient to first define a predicate Swapped:
def Swapped[T:Iso:Eq](l1: Lc, l2: Lc)

(a: Vec[T], i: Rep[Int], j: Rep[Int]) = {

((at(a(i),l1)) equal (at(a(j),l2))) &&

((at(a(j),l1)) equal (at(a(i),l2))) &&

forall{k: Rep[Int] =>

(0 <= k && k < a.length && k != i && k != j) ==>

((at(a(k),l1)) equal (at(a(k),l2)))}

}

where for equal, we can choose either deep or shallow equality. The
parameters l1 and l2 of type Lc range over Old,Post, and potentially
other modifiers, as in plain ACSL. The helper function inswap al-
ready can use Swapped in its post-condition. While Swapped captures
the swapping of two specific elements, we actually want to express
the property of swapping any two elements for the purpose of defin-
ing permutations. We thus add an auxiliary definition Swapped1:
def Swapped1[T:Iso:Eq](ls: (Lc,Lc))(a: Vec[T]) =

exists{i: Rep[Int] => exists{j: Rep[Int] => Swapped(ls)(a,i,j)}}

In a second step, we define Permut as the reflexive, transitive,
closure of Swapped1:
def Permut[T:Iso:Eq] =

reflexiveTransitiveClosure[Vec[T]](Swapped1, as="Permut")

The combinator reflexiveTransitiveClosure will generate an
inductive definition in ACSL. For the instantiation Permut[Rep[Int]],
the generated code looks as follows:
/*@ inductive Permut_Int{L1,L2}(int* a, integer n) {

case Permut_Int_refl{L}:

\forall int* a, integer n; Permut_Int{L,L}(a, n) ;

case Permut_Int_trans{L1,L2,L3}:

\forall int* a, integer n;

Permut_Int{L1,L2}(a, n) && Permut_Int{L2,L3}(a, n) ==>

Permut_Int{L1,L3}(a, n) ;

case Permut_Int_step{L1,L2}:

\forall int* a, integer n;

(\exists integer i, integer j;

\at(a[i],L1)==\at(a[j],L2) && \at(a[j],L1)==\at(a[i],L2) &&

(\forall integer k; 0 <= k < n && k != i && k != j ==>

\at(a[k],L1)==\at(a[k],L2))) ==>

Permut_Int{L1,L2}(a, n) ; }*/

The parameters a and n correspond to the fields of Vec, according
to its Iso definition. The body of the Permut_Int_step case contains
the inlined definition of Swapped1 on the left-hand side of the impli-
cation ... ==> Permut_Int{L1,L2}(a, n).

Over the plain version in Frama-C, the first benefit of staging
is that we are able to define and use higher-order combinators like
reflexiveTransitiveClosure, much like higher-order functions in
normal code. The second major benefit is that we can abstract over
the datatype and over the comparison function very easily. In par-
ticular, the comparator cmpworks both as C code and as ACSL spec-
ification. From the sort routine, we can derive specialized verified
sort functions for any type T for which we have a comparator. Fi-
nally, we can also control the data layout of the sequence itself by
varying the Iso type class for Vec and Pointer.

The definition of Ord[T] follows that of Eq[T] seen earlier. What
is interesting, although standard type class practice, is that we can
define higher-order instances of Ord, for example, in order to com-
bine multiple separate orderings into a joint lexicographic ordering.
In our generative setting, the Ord instances can also decide whether
the comparison will be implemented as a shallow function (i.e. in-
lined into function insort) or delegate to a generated function.

Since we only verify the generated code, we only verify partic-
ular instances of the sort routine, not the generic one (which does

not exist as C code, only in the generator). So what happens if we
specialize the sort routine with an unsuitable comparator, for exam-
ple, one that is not transitive? The generated code will fail to verify.
In the generator, we do not have to explicitly require that the com-
parator be transitive – it will verify when it is, and will not when it
isn’t. However, we can further explicitly indicate this requirement
in the generator, guiding blame assignment to fault the comparator
instantiation rather than the sorting routine.

In order to achieve this, we add a method valid to the Ord[T] in-
terface, which will define the property of actually being an ordering
relation, namely reflexivity, antisymmetry, and transitivity.
trait Ord[T] {

def cmp: (T,T) => Rep[Boolean]

def valid = reflexivity && antisymmetry && transitivity

def reflexivity = forall{x => cmp(x,x)}

...

}

In method insort, we can now add a check ord[T].valid to the pre-
condition, and thus verify the desired properties up front. This will
prevent any spurious verification errors in the middle of insort that
are due to the provided comparison lacking one of these properties,
resulting in more accurate blame assignment.

Finally, this case study illustrates that the overhead of being
generic does not translate to much overhead for the programmer
in terms of generative verification.

5.2 Linear Algebra Library

For this case study, we implement a small linear algebra library
with operations on matrices and vectors. First, we define a class
Matrix in the same style as the class Vec.

Here is the definition of matrix multiplication, which generates
code that fully verifies in Frama-C. The definition is parameterized
over the element type T of the matrix as well as a suitable type class
instance specifying a ring over T, an algebraic structure defining
(zero, +, *).
def mmult[T:Iso:Ring] =

fundef("mmult") { (a: Matrix[T], b: Matrix[T], o: Matrix[T]) =>

requires(a.cols == b.rows && a.rows == o.rows && b.cols == o.cols)

requires(o.mutable)

for (r < 0 until a.rows) {

for (c < 0 until b.cols) {

o((r,c)) = zero

for (i < 0 until a.cols) {

o((r,c)) = o(r,c) + a(r,i) * b(i,c)

}}}

}

Through Iso[Matrix[T]], the appropriate data invariants are au-
tomatically added as pre- and post- conditions. This is why the
remaining explicit pre-condition focuses on the dimension con-
straints that are specific to the problem at hand. This automation
for data invariants also makes it convenient to call these linear al-
gebra routines as one would an external library, without having to
worry about annotations.

The framework also automatically infers the loop properties, be-
cause they are generic to for-loops and not specific to the problem
at hand. For example, here is the ACSL code generated for the first
loop for (r < 0 until a.rows), modulo renaming to match source
instead of target:
/*@

loop invariant 0<=r<=a.rows;

loop assigns r, o.p[(0..(o.rows*o.cols)1)];

loop variant nr; */

Finally, we can use the host language to structure code and
specification logic further. For example, we define pointwise addi-
tion and scalar multiplication, delegating to an underlying common
staging-time abstraction setFrom:

853

def madd[T:Iso:Ring] =

fundef("add") { (a: Matrix[T], b: Matrix[T], o: Matrix[T]) =>

o.setFrom2({ (ai: T, bi: T) => ai + bi }, a, b) }

def smult[T:Iso:Ring] =

fundef("smult", { (a: T, b: Matrix[T], o: Matrix[T]) =>

o.setFrom1({ (bi: T) => a*bi }, b)

// easy to prove, thanks to annotations added by setFrom

ensures{result: Rep[Unit] => (a == zero) ==>

(0 until o.rows).forall{r => (0 until o.cols).forall{c =>

o(r,c) == zero }}}})

The higher-order staging-time abstraction setFrom in the Matrix[T]
class assigns element-wise, mapping the staging-time function ar-
gument f over a list of matrices:
def setFrom[A:Iso](f: List[A] => T, ms: List[Matrix[A]])

(implicit eq: Eq[T]) = {

def r(i: Rep[Int]): T = f(ms.map{m => m.a(i)})

def p(n: Rep[Int]): Rep[Boolean] = forall{j: Rep[Int] =>

(0 <= j && j < n) ==> (this.a(j) deep_equal r(j)) }

ms.foreach{m => requires(this.rows == m.rows && this.cols == m.cols)}

// ... separation requirements ...

requires(this.mutable)

for (i < 0 until this.size) {

loop_invariant(p(i))

this.a(i) = r(i)

}

}

The staging-time function passed in as argument is required to
be pure, so it can generate both C code and ACSL logic. Hence,
the staging-time abstraction can also decorate the result with extra
specifications, and thanks to these, we can verify further domain-
specific properties of scalar multiplication. Also, the staging-time
abstraction can add its own pre-condition to require matching di-
mensions of the argument and output matrices.

In general, we found it a useful pattern to create our own
staging-time abstractions that encapsulate verification properties.
Here, notice that setFrom does not pass in the position of the el-
ement to the (pure) calculation, so we know that each entry is
conceptually computed independently. We can also define another
abstraction that passes the position (row index, column index) in
the matrix, encapsulating the specific separation requirements and
properties for this variant.

5.3 Regular Expression Matcher

We illustrate that one can often reason once and generically at gen-
eration time, producing specialized low-level code along with the
annotations to verify it. We take a staged regexp interpreter, which
compiles a regular expression to low-level code for matching a
string, and by minimally annotating the staged interpreter, produce
low-level code that can be verified to be memory-safe.

Our starting point is a simple regular expression matcher [45].
We view it as a tiny interpreter, where the program is the regular
expression and the input is the text to match. It is well-known [34]
that we can turn an interpreter into a compiler via staging, by
making the program (i.e. the regular expression) known and the
input (i.e. the text to match) unknown to the generator [76]. Of
course, we do not necessarily get an optimizing compiler, but in
the case of regexp matchers, we can exploit the connection to finite
automata to optimize beyond simple specialization [75, 73].

In this case study, we simply adapt this well-known generative
programming pattern of turning an interpreter into a compiler, so
that the low-level specialized code verifies to be free of memory
errors. It is nice that we can annotate the generic code once, and
derive verified code for each regular expression – although we don’t
verify the generator: we have to verify the generated code with
Frama-C for each specialization.

In total, we only need three straightforward annotations in the
generator: we simply require that the input text is a valid string,
and we annotate each loop with very simple invariants that guide

// trait HttpParser extends StagedParser

def status: Parser[Int] =

(accept("HTTP/") ~> acceptNat ~> accept(’.’) ~>

acceptNat ~> whitespaces) ~>

nat <~ acceptLine

def headerMap: List[(String, Int)] =

("ContentLength", CONTENT_LENGTH):: Nil

def headerName: Parser[Int] =

((for ((h,i) < headerMap) yield (accept(h) ^^^ i)).reduce(_ | _)) |

(repUnit(letter | accept(’’)) ^^^ OTHER_HEADER)

def headerValue(h: Rep[Int]) =

if (h==CONTENT_LENGTH) (nat <~ whitespaces <~ acceptNewline)

else (acceptLine ^^^ NO_VALUE)

def header: Parser[Int] =

(headerName <~ whitespaces <~ accept(’:’) <~ whitespaces) >>

headerValue

def headers: Parser[Int] =

rep(header, 0, { (a: Rep[Int], x: Rep[Int]) =>

if (x==NO_VALUE) a else x })

def acceptBody(n: Rep[Int]): Parser[Int] =

if (n<0) Parser[Int] { input => Failure(input) }

else (repN(anyChar, n) ^^^ n) <~ acceptNewline

def http: Parser[Int] =

(status ~> headers <~ acceptNewline) >> acceptBody

Figure 5. HTTP parser via staged parser combinators in Scala
// trait ChunkedHttpParser extends HttpParser

override def headerMap = super.headerMap :+

("TransferEncoding", TRANSFER_ENCODING)

override def headerValue(h: Rep[Int]) =

if (h==TRANSFER_ENCODING)

(accept("chunked") ^^^ CHUNKED) <~ whitespaces <~ acceptNewline

else super.headerValue(h)

override def acceptBody(n: Rep[Int]): Parser[Int] =

if (n==CHUNKED) chunkedBody else super.acceptBody(n)

def hexDigit2Int: Parser[Int] =

digit2Int |

(acceptIf(c => c >= unit(’a’) && c <= unit(’f’)) ^^

(c => 10+(c unit(’a’)).asInstanceOf[Rep[Int]]))

def hex: Parser[Int] = num(hexDigit2Int, 16)

def acceptChunk: Parser[Int] =

(hex <~ acceptNewline) >> super.acceptBody

def chunkedBody: Parser[Int] =

rep(acceptChunk, 0, { (a: Rep[Int], x: Rep[Int]) =>

if (a<0) a

else if (a>Int.MaxValue x) OVERFLOW

else a+x

}, overflowOrPos)

Figure 6. HTTP parser extended with chunking

Frama-C to accept that the string is always accessed within its
valid range – in the generator, only two source loops are potentially
reified into the generated code.

For comparison, we also annotated the original regular expres-
sion matcher interpreter, so that Frama-C can verify its memory
safety. While straightforward, it is interestingly more work than
annotating the generator, because Frama-C needs to ensure that the
regular expression is also accessed within range, while of course,
in the compiler variant, the regular expression just becomes part of
the low-level code. We also had to guide Frama-C with an asser-
tion so that it could see that a recursive call (on a smaller part of the
regular expression) was indeed well-founded.

Finally, as expected, the specialized code is usually faster than
the original regular expression matcher. For example, on the text
acacabc...caba of length 1000000 where ... are all c’s, which
matches the regular expression ab.*ab, the specialized code is about
twice as fast as the original interpreter in C.

5.4 HTTP Parser

We adapt the work on staged parser combinators [43, 42] to gen-
erate C code instead of Scala code. After this initial port (which
amounts to switching the code generation backend of the LMS
framework), with minimal additional work, we further ensure that

854

parser requests per second
(baseline) nginx (0.94± 0.01) · 106

(our) staged verified (1.00± 0.01) · 106

Figure 7. HTTP parser performance results (higher is better)

the generated C code verifies completely with Frama-C, guarantee-
ing the absence of memory and overflow errors. Thus, we obtain
a high-performance and secure HTTP parser. While HTTP parsers
have caused major vulnerabilities in both Apache and Nginx re-
lated to chunk processing [12, 23, 24], we show that we can ensure
safety without sacrificing performance nor productivity.

We build our HTTP parser using high-level combinators. Since
we can use staging-time abstractions to structure our code without
penalty, we build a basic HTTP parser (Figure 5) and extend it to
handle chunk processing (Figure 6). The generated code for the
HTTP parser is some thousands of lines of low-level C code, a
glimpse of which we display in Figure 8.

We show performance results in Figure 7, comparing to the
HTTP parser of Nginx [60], which is written in C as well. On a
benchmark for parsing HTTP responses and validating the payload
length, our approach is competitive, processing one million items
per second.

We only need a few changes to go from a working to a verified
parser. First, like for the regular expression matcher, we require and
ensure that the input remains valid:
type Input = Array[Char] // \0terminated C string

def valid_input(s: Rep[Input]) =

s.length >= 0 && valid(s, 0 until s.length+1)

We also need some annotations on loops, but we have very few of
those. The combinator rep uses a while loop to repeatedly parse
with another combinator p:
def rep[T: Typ, R: Typ](p: Parser[T], z: Rep[R],

f: (Rep[R], Rep[T]) => Rep[R],

pz: Option[Rep[R] => Rep[Boolean]] = None) =

Parser[R] { input =>

var in = input

var c = true; var a = z

while (c) {

loop_invariant(valid_input(in) && (pz.map(_(a)).getOrElse(true)))

loop_assigns(in, c, a)

p(in).apply[Unit](

(x, next) => { a = f(a, x); in = next },

next => { c = false })

}

ParseResultCPS.Success(a, in)

}

The invariant ensures that the input remains valid, but also, option-
ally, a custom invariant that depends on the accumulated result.

Finally, we need the parser to behave adequately in case of
overflow. In particular, the usual num combinator to parse a number
fails to verify, because of possible overflow errors:
def num(c: Parser[Int], b: Int): Parser[Int] =

c >> { z: Rep[Int] =>

rep(c, z, { (a: Rep[Int], x: Rep[Int]) => a*b+x })

}

Thus, we overwrite this parser combinator to explicitly handle
overflow errors:
def num(c: Parser[Int], b: Int): Parser[Int] =

c >> { z: Rep[Int] =>

rep(c, z, { (a: Rep[Int], x: Rep[Int]) =>

if (a<0) a

else if (a>Int.MaxValue / b b) OVERFLOW

else a*b+x

}, overflowOrPos)

}

This final step provides the main assurance we were after: the
absence of overflows that could be exploited by malicious inputs,

#include <limits.h>

#include <string.h>

char * p_chunked(char * x1730);

char * p_TransferEncoding(char * x1732);

char * p_ContentLength(char * x1734);

char * p_HTTP(char * x1736);

/*@

requires ((strlen(x0)>=0) && \valid(x0+(0..strlen(x0))));

assigns \nothing;

*/

int p(char * x0) {

int x2 = 1;

char *x3 = p_HTTP(x0); ...

if (..) { ...

/*@

loop invariant ((strlen(x468)>=0) && \valid(x468+(0..strlen(x468))));

loop assigns x468, x469, x470;

*/

for (;;) {

int x471 = x469;

if (!x471) break;

char *x473 = x468;

char *x474 = p_ContentLength(x473); ...

if (x514) {

char *x515 = p_TransferEncoding(x473); ...

} ... } ... } ... }

/*@

requires ((strlen(s)>=0) && \valid(s+(0..strlen(s))));

assigns \nothing;

ensures ((0==\result) || ((strlen(\result)>=0) &&

\valid(\result+(0..strlen(\result)))));

*/ // elided contracts below are identical

char * p_HTTP(char * s) { ... }

/*@ ... */ char * p_ContentLength(char * s) { ... }

/*@ ... */ char * p_TransferEncoding(char * s) { ... }

/*@ ... */ char * p_chunked(char * s) { ... }

Figure 8. HTTP parser generated C code

as demonstrated with known vulnerabilities in popular servers like
Nginx and Apache [23, 24].

6. Discussion

We aim to give a broader perspective on our approach and answer
some common questions below.

Why not write code in a low-level language with an advanced
type system that ensures memory safety, such as Rust? While
Rust [54] seems well on track to become a viable and safer re-
placement for C in many situations, we still want the benefits of
generative programming and “abstraction without regret”: on the
one hand performance without giving up on productivity and ex-
pressive high-level abstractions, and on the other hand the ability
to verify functional correctness via (potentially higher-order) con-
tracts.

Why not use a static analyzer or model checker that has more
automation than Frama-C? Wouldn’t this remove the need for gen-
erating all these annotations? Automatic analysis of C code is a
hard problem, despite some successes. For full static verification of
code that may include unbounded loops we are not aware of tools
that would improve over Frama-C in a fundamental way, although
using other comparable tools like VeriFast [39] would certainly be
feasible.

Why not verify high-level code directly? Already, we do not trust
the code generator. We would trust a high-level verifier much less:
does what is verified correspond to what is generated? Program
generators can be thought of as DSLs, with the implied assump-
tion that one needs many of them, and that they can be built up
from modules. Thus, the overall system will be in flux and under
active development, which makes it appear safer to rely on standard
tools for C. There are big teams working behind these tools, indus-
trial best practices, fuzzing attacks on analyzers [22], and so on.
Furthermore, because verification is independent, we can afford to
take more risks, and be more experimental during code generation.

Why not write everything in Coq and verify the generator?
This is a much harder problem, despite much ongoing and very

855

promising work in this area [17, 16, 91, 18, 25]. We settle for proof
carrying code / translation validation instead of certified compilers.
By generating C code and using an off-the-shelf verifier we obtain
modularity and modular verification. We can interface with other C
code, which can be verified independently. And we also get to use
existing, powerful, program generation frameworks (LMS).

Translation validation has a number of practical benefits: we
can perform optimizations on the LMS IR, but we are verifying
the code after optimization. Any properties expressed as specifica-
tions will still hold. This aspect is similar to other recent systems
like Cogent [68, 2] (which also targets C), but it is important to
look at the differences, too. Cogent in particular is a stand-alone
DSL where “interesting” program properties can be encoded in the
type system, e.g. using linear types. The Cogent compiler then uses
translation validation to generate verified code. In being a complete
language on its own, Cogent does not have any relation to genera-
tive programming, which, as mentioned earlier, we crucially want
for performance.

How do we ensure that transformations do not remove or tam-
per with specifications? When checking generic safety properties,
such as memory safety, we can do an end-to-end check on the gen-
erated code level, and trust the safety claim regardless of the cor-
rectness of the generator and its source. For modular verification
(where we rely on pre-conditions to ensure safety), we need to be
more careful. For functional correctness properties beyond safety,
we can either inspect and audit the generated specifications, or, bet-
ter yet, add a manual layer at the C level that calls generated C func-
tions and verifies their properties using externally provided ACSL
specifications – again, a benefit of targeting a standard specification
language.

7. Related Work

The present paper touches aspects of security, verification, formal
methods, as well as embedded DSLs and generative programming
– all vast spaces of their own. We mention the most important lines
of related work below.

Memory Safety Control-flow hijacks based on memory corrup-
tion bugs remain the largest attack vector for low-level code.
Plainly rewriting C code in safe high-level languages is deemed un-
realistic for performance [84], and fully verifying existing C code
statically is unrealistic for complexity. This dilemma has lead to an
arms race between offensive and defensive techniques [84] based
on various kinds of dynamic monitoring (e.g. CFI [1]), which also
introduce varying levels of overhead, and are often based on simpli-
fying assumptions that lead to incompatibilities or more sophisti-
cated attacks. Generative programming eliminates the performance
drawbacks of high-level languages, but re-introduces security con-
cerns. This paper shows how the two can be reconciled to generate
C code which can be statically verified with reasonable effort.

Parsing as Attack Vector Working with untrusted input requires
care. Hence, many vulerabilities arise at this boundary, and are of-
ten overlooked. For example, after the celebrated static verification
of PolarSSL 1.1.8 [89], a remote code execution vulnerability was
found due to a bug in an ASN.1 parser in the X.509 module, which
was not part of the verification effort [4, 66]. Exploitable bugs in
HTTP parsers have been reported for all major web servers, e.g.
Nginx [24] and Apache [23]. A recent paper from the security com-
munity makes a case for verified parsers, and in particular mentions
parser combinators [12]. In this paper, we used parser generator
combinators [43] to build an HTTP parser that is memory and over-
flow safe, and as fast as Nginx.

Static Verification Beyond “simple” security properties like
memory safety, functional correctness requires verification with
respect to a specification. There exists many static verification,

analysis, and model-checking tools of various degrees of sophisti-
cation for a variety of languages, e.g. VeriFast [39] Frama-C [21],
Astré [20], Boogie [5], Spec# [6], Dafny [52], Leon [48], BLAST
[36]. Still, building fully verified software remains extremely labor
intensive. Notable successes include the seL4 and Verve verified
OS kernels [46, 93], the Windows device drivers project [10], and
the CompCert verified C compiler [53]. A recent example of trans-
lation validation is Cogent [68, 2], a DSL for verified systems pro-
gramming that generates C. The correctness of verification tools is
also an important concern [22]. Nonetheless, there are clear signs
that formal verification is on the verge of becoming practical for
larger classes of software (e.g [57]).

We believe that our work has the potential to accelerate this pro-
cess by integrating verification with existing generative program-
ming frameworks, which enables pragmatic trade-offs, and in par-
ticular allows programmers to transparently use higher-order con-
structs, which are poorly supported by verification tools, at genera-
tion time without leaving a trace in the code that is actually verified.
Our work is heavily inspired by research coming out of DARPA’s
HACMS program [31], in particular Chlipala’s Bedrock system
[17], related work on verified systems-level software [16, 91, 18],
and the DSL-based approaches by Galois and others [28, 37, 62] –
all pioneering the use of meta-programming for verification.

Contracts The “Design by Contract” programming model has its
origin in Eiffel [55, 56]. Higher-order contracts were introduced by
Findler and Felleisen [30], and play a significant role in the Racket
ecosystem [29, 26, 79, 88]. Higher-order contract systems have
also been proposed for other languages, e.g. JavaScript [44]. The
performance overhead of dynamic contract monitoring is known to
be large [80, 86, 87], although clever JIT compilation techniques
are a promising avenue to reduce overhead [8].

A key realization is that higher-order contracts only fail at
first-order checks. The present paper is greatly inspired by recent
work on soft contract verification [58, 59], which uses symbolic
execution to unfold higher-order function calls to reach a first-order
representation, which can be statically checked. Our approach is
based on the same insight, but uses staging-time evaluation to
eliminate higher-order functions, instead of symbolic execution. In
contrast to soft verification, which works well in many cases, but
may leave some dynamic checks in other cases, our meta-language
type distinction between normal and staged expressions guarantees
the absence of dynamic checks.

Generative Programming Generative or multi-stage program-
ming (MSP, staging for short), as established by Taha and Sheard
[85] enables programmers to delay evaluation of certain expres-
sions to a generated stage. MetaOCaml [14] implements a clas-
sic staging system based on quasi-quotation. Lightweight Modular
Staging (LMS) [72] uses types instead of syntax to identify bind-
ing times, and generates an intermediate representation instead of
target code [69]. LMS draws inspiration from earlier work such
as TaskGraph [9], a C++ framework for program generation and
optimization. The idea of representing an embedded language ab-
stractly as methods (finally tagless) is due to Carette et al. [15] and
Hofer et al. [38], going back to much earlier work by Reynolds [67].
Compiling embedded DSLs through dynamically generated ASTs
was pioneered by Leijen and Meijer [51] and Elliot et al. [27].

A number of high-performance program generators have been
built, for example ATLAS [92] (linear algebra), FFTW [33] (dis-
crete fourier transform), and Spiral [63] (general linear transfor-
mations). Other systems include PetaBricks [3], CVXgen [35] and
Halide [65, 64]. Delite is a compiler framework for embedded
DSLs that provides parallelization and heterogeneous code gener-
ation on top of LMS [73, 13, 74, 50, 82]. Related work on low-
level systems oriented programming in high-level languages in-

856

cludes [32] and the Singularity operating system [49], the LegoB-
ase database engine [47], and staged parsers for communication
protocols [43].

8. Conclusions

We make the case that generative programming enables “abstrac-
tion without regret” for security and verification as it does for per-
formance. Like for performance, we can use staging-time abstrac-
tions and exploit domain-specific and high-level knowledge to keep
productivity high while enabling independent verification of the
generated C code annotated with ACSL specifications. For exam-
ple, we generate a low-level fast HTTP parser, verified to be safe of
memory and overflow errors, from a high-level source using staged
parser combinators with just a handful of lines needed to achieve
safety.

Generative programming composes well with verification when
the properties to verify match the abstractions used at staging time.
In such cases, it is easy to also compose the annotation logic in
order to ensure verification. Custom correctness properties require
more effort (e.g. sorting), but this effort is not more than what
would be required in a non-generative setting, and the generative
setting can be further exploited to parameterize use cases over such
an effort. Overall, we were pleasantly surprised by (1) how little
work is required to go from working to verified (2) how little work
is required to go from one instance verified to many (i.e. up to all
wanted) instances verified.

By extending generative programming to verification, we hope
to enlarge the appeal of the approach beyond high-performance
computing to also safety-critical domains. By enabling users in
such domains to leverage “abstraction without regret”, we hope to
accelerate the spreading of formal methods based approaches and
static verification to larger classes of software.

Acknowledgments

The authors thank Viktor Kuncak and Sandrine Blazy for insight-
ful discussions. Manohar Jonnalagedda deserves credit for helping
with the HTTP parser case study, which is based on his prior work.
This research was supported by NSF through awards 1553471 and
1564207, and by the Swiss FNS through award 200021_166154.

References

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow
integrity. In ACM Conference on Computer and Communications

Security, pages 340–353. ACM, 2005.

[2] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor,
J. Beeren, Y. Nagashima, J. Lim, T. Sewell, J. Tuong, G. Keller, T. C.
Murray, G. Klein, and G. Heiser. Cogent: Verifying high-assurance
file system implementations. In ASPLOS, pages 175–188. ACM,
2016.

[3] S. P. Amarasinghe. Petabricks: a language and compiler based on
autotuning. In M. Katevenis, M. Martonosi, C. Kozyrakis, and
O. Temam, editors, High Performance Embedded Architectures and

Compilers, 6th International Conference, HiPEAC 2011, Heraklion,

Crete, Greece, January 24-26, 2011. Proceedings, page 3. ACM,
2011.

[4] ARMmbed. PolarSSL security advisory 2014-04, 2015. https:

//tls.mbed.org/techupdates/securityadvisories/polarssl

securityadvisory201404.

[5] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO, volume 4111 of Lecture Notes in Computer Science, pages
364–387. Springer, 2005.

[6] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,
and H. Venter. Specification and verification: the spec# experience.
Commun. ACM, 54(6):81–91, 2011.

[7] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and
V. Prevosto. ACSL: ANSI/ISO C Specification Language, reference
manual, version 1.11, 2009-2016.
http://framac.com/download/acsl.pdf.

[8] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Kirilichev, T. Pape, J. G.
Siek, and S. Tobin-Hochstadt. Pycket: a tracing JIT for a functional
language. In K. Fisher and J. H. Reppy, editors, Proceedings of

the 20th ACM SIGPLAN International Conference on Functional

Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3,

2015, pages 22–34. ACM, 2015.

[9] O. Beckmann, A. Houghton, M. R. Mellor, and P. H. J. Kelly. Runtime
code generation in C++ as a foundation for domain-specific optimisa-
tion. In Domain-Specific Program Generation, pages 291–306, 2003.

[10] J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for
systems-level code. In CAV, volume 6806 of Lecture Notes in Com-

puter Science, pages 178–183. Springer, 2011.

[11] J. T. Boyland, editor. 29th European Conference on Object-Oriented

Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Repub-

lic, volume 37 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[12] S. Bratus, M. L. Patterson, and A. Shubina. The bugs we have to kill.
; login:: the magazine of USENIX & SAGE, 40(4):4–10, 2015.

[13] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun. A heterogeneous parallel framework for domain-
specific languages. PACT, 2011.

[14] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-
stage languages using asts, gensym, and reflection. GPCE, pages 57–
76, 2003.

[15] J. Carette, O. Kiselyov, and C. chieh Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages. J.

Funct. Program., 19(5):509–543, 2009.

[16] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and
N. Zeldovich. Using crash hoare logic for certifying the FSCQ file
system. In E. L. Miller and S. Hand, editors, Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP 2015, Monterey,

CA, USA, October 4-7, 2015, pages 18–37. ACM, 2015.

[17] A. Chlipala. The bedrock structured programming system: combining
generative metaprogramming and hoare logic in an extensible pro-
gram verifier. In G. Morrisett and T. Uustalu, editors, ACM SIGPLAN

International Conference on Functional Programming, ICFP’13,

Boston, MA, USA - September 25 - 27, 2013, pages 391–402. ACM,
2013.

[18] A. Chlipala. From network interface to multithreaded web applica-
tions: A case study in modular program verification. In S. K. Raja-
mani and D. Walker, editors, Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
609–622. ACM, 2015.

[19] U. Costa. Correct sorting with Frama-C and some thoughts on formal
methdos, Feb 2011. ulissesaraujo.wordpress.com.

[20] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The astreé analyzer. In ESOP, volume 3444 of Lecture

Notes in Computer Science, pages 21–30. Springer, 2005.

[21] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C, pages 233–247. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[22] P. Cuoq, B. Monate, A. Pacalet, V. Prevosto, J. Regehr, B. Yakobowski,
and X. Yang. Testing static analyzers with randomly generated pro-
grams. In NASA Formal Methods, volume 7226 of Lecture Notes in

Computer Science, pages 120–125. Springer, 2012.

[23] CVE. 2002-0392: Apache security advisory.
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE2002

0392.

[24] CVE. 2013-2028: nginx security advisory.
https://cve.mitre.org/cgibin/cvename.cgi?name=CVE2013

857

https://tls.mbed.org/tech-updates/security-advisories/polarssl-security-advisory-2014-04
https://tls.mbed.org/tech-updates/security-advisories/polarssl-security-advisory-2014-04
https://tls.mbed.org/tech-updates/security-advisories/polarssl-security-advisory-2014-04
http://frama-c.com/download/acsl.pdf
https://ulissesaraujo.wordpress.com/2011/02/12/correct-sorting-with-frama-c-and-some-thoughts-on-formal-methdos/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0392
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0392
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028

2028.

[25] B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala. Fiat: Deduc-
tive synthesis of abstract data types in a proof assistant. In POPL,
pages 689–700. ACM, 2015.

[26] C. Dimoulas and M. Felleisen. On contract satisfaction in a higher-
order world. ACM Trans. Program. Lang. Syst., 33(5):16, 2011.

[27] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
J. Funct. Program., 13(3):455–481, 2003.

[28] T. Elliott, L. Pike, S. Winwood, P. C. Hickey, J. Bielman, J. Sharp,
E. L. Seidel, and J. Launchbury. Guilt free ivory. In B. Lippmeier,
editor, Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,

Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, pages
189–200. ACM, 2015.

[29] M. Felleisen, R. B. Findler, M. Flatt, S. Krishnamurthi, E. Barzi-
lay, J. A. McCarthy, and S. Tobin-Hochstadt. The racket manifesto.
In T. Ball, R. Bodík, S. Krishnamurthi, B. S. Lerner, and G. Mor-
risett, editors, 1st Summit on Advances in Programming Languages,

SNAPL 2015, May 3-6, 2015, Asilomar, California, USA, volume 32
of LIPIcs, pages 113–128. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[30] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In M. Wand and S. L. P. Jones, editors, Proceedings of the Seventh

ACM SIGPLAN International Conference on Functional Program-

ming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002.,
pages 48–59. ACM, 2002.

[31] K. Fisher. HACMS: high assurance cyber military systems. In HILT,
pages 51–52. ACM, 2012.

[32] D. Frampton, S. M. Blackburn, P. Cheng, R. Garner, D. Grove, J. E. B.
Moss, and S. I. Salishev. Demystifying magic: high-level low-level
programming. In A. L. Hosking, D. F. Bacon, and O. Krieger, editors,
Proceedings of the 5th International Conference on Virtual Execution

Environments, VEE 2009, Washington, DC, USA, March 11-13, 2009,
pages 81–90. ACM, 2009.

[33] M. Frigo. A fast fourier transform compiler. In PLDI, pages 169–180,
1999.

[34] Y. Futamura. Partial evaluation of computation process, revisited.
Higher-Order and Symbolic Computation, 12(4):377–380, 1999.

[35] M. Hanger, T. A. Johansen, G. K. Mykland, and A. Skullestad. Dy-
namic model predictive control allocation using CVXGEN. In 9th

IEEE International Conference on Control and Automation, ICCA

2011, Santiago, Chile, December 19-21, 2011, pages 417–422. IEEE,
2011.

[36] T. A. Henzinger, R. Jhala, and R. Majumdar. The BLAST software
verification system. In SPIN, volume 3639 of Lecture Notes in Com-

puter Science, pages 25–26. Springer, 2005.

[37] P. C. Hickey, L. Pike, T. Elliott, J. Bielman, and J. Launchbury.
Building embedded systems with embedded dsls. In Jeuring and
Chakravarty [40], pages 3–9.

[38] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic
embedding of DSLs. In Y. Smaragdakis and J. G. Siek, editors,
GPCE, pages 137–148. ACM, 2008.

[39] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. Verifast: A powerful, sound, predictable, fast verifier for
C and java. In NASA Formal Methods, volume 6617 of Lecture Notes

in Computer Science, pages 41–55. Springer, 2011.

[40] J. Jeuring and M. M. T. Chakravarty, editors. Proceedings of the

19th ACM SIGPLAN international conference on Functional pro-

gramming, Gothenburg, Sweden, September 1-3, 2014. ACM, 2014.

[41] J. Jeuring and P. Jansson. Polytypic programming. In Advanced

Functional Programming, volume 1129 of Lecture Notes in Computer

Science, pages 68–114. Springer, 1996.

[42] M. Jonnalagedda. Staged parser combinators and recursion, Sep 2015.
manojo.github.io.

[43] M. Jonnalagedda, T. Coppey, S. Stucki, T. Rompf, and M. Odersky.

Staged parser combinators for efficient data processing. In A. P.
Black and T. D. Millstein, editors, Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA 2014, part of SPLASH 2014,

Portland, OR, USA, October 20-24, 2014, pages 637–653. ACM,
2014.

[44] M. Keil and P. Thiemann. Treatjs: Higher-order contracts for
javascripts. In Boyland [11], pages 28–51.

[45] B. Kernighan and R. Pike. A regular expression matcher. In G. Wilson
and A. Oram, editors, Beautiful Code, chapter 1. O’Reilly, 2007.

[46] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell,
R. Kolanski, and G. Heiser. Comprehensive formal verification of
an OS microkernel. ACM Trans. Comput. Syst., 32(1):2, 2014.

[47] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient
query engines in a high-level language. PVLDB, 7(10):853–864,
2014.

[48] V. Kuncak. Developing verified software using leon. In NFM, volume
9058 of Lecture Notes in Computer Science, pages 12–15. Springer,
2015.

[49] J. R. Larus and G. C. Hunt. The singularity system. Commun. ACM,
53(8):72–79, 2010.

[50] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, T. Rompf, M. Oder-
sky, and K. Olukotun. Implementing domain-specific languages for
heterogeneous parallel computing. IEEE Micro, 31(5):42–53, 2011.

[51] D. Leijen and E. Meijer. Domain specific embedded compilers. In
DSL, pages 109–122, 1999.

[52] K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In LPAR (Dakar), volume 6355 of Lecture Notes in

Computer Science, pages 348–370. Springer, 2010.

[53] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

[54] N. D. Matsakis and F. S. Klock, II. The Rust language. Ada Lett.,
34(3):103–104, Oct. 2014.

[55] B. Meyer. Eiffel: A language and environment for software engineer-
ing. Journal of Systems and Software, 8(3):199–246, 1988.

[56] B. Meyer. Eiffel as a framework for verification. In VSTTE, volume
4171 of Lecture Notes in Computer Science, pages 301–307. Springer,
2005.

[57] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff. How amazon web services uses formal methods.
Communications of the ACM, 58(4):66–73, 2015.

[58] P. C. Nguyen, S. Tobin-Hochstadt, and D. V. Horn. Soft contract
verification. In Jeuring and Chakravarty [40], pages 139–152.

[59] P. C. Nguyen, S. Tobin-Hochstadt, and D. V. Horn. Higher-order
symbolic execution for contract verification and refutation. 2015.

[60] nodejs & nginx. HTTP parser.
https://github.com/nodejs/httpparser.

[61] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and M. Püschel.
Spiral in scala: towards the systematic construction of generators for
performance libraries. In J. Järvi and C. Kästner, editors, Generative

Programming: Concepts and Experiences, GPCE’13, Indianapolis,

IN, USA - October 27 - 28, 2013, pages 125–134. ACM, 2013.

[62] L. Pike, P. C. Hickey, J. Bielman, T. Elliott, T. DuBuisson, and
J. Launchbury. Programming languages for high-assurance au-
tonomous vehicles: extended abstract. In N. A. Danielsson and
B. Jacobs, editors, Proceedings of the 2014 ACM SIGPLAN Work-

shop on Programming Languages meets Program Verification, PLPV

2014, January 21, 2014, San Diego, California, USA, Co-located with

POPL ’14, pages 1–2. ACM, 2014.

[63] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. A.
Padua, M. M. Veloso, and R. W. Johnson. Spiral: A generator for
platform-adapted libraries of signal processing alogorithms. IJHPCA,
18(1):21–45, 2004.

858

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
http://manojo.github.io/2015/09/04/staged-parser-combinators-recursion
https://github.com/nodejs/http-parser

[64] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Amarasinghe,
and F. Durand. Decoupling algorithms from schedules for easy
optimization of image processing pipelines. ACM Trans. Graph.,
31(4):32, 2012.

[65] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. P.
Amarasinghe. Halide: a language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines.
In H. Boehm and C. Flanagan, editors, ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’13,

Seattle, WA, USA, June 16-19, 2013, pages 519–530. ACM, 2013.

[66] J. Regehr. Comments on a formal verification of PolarSSL, 2015.
http://blog.regehr.org/archives/1261.

[67] J. Reynolds. User-defined types and procedural data structures as
complementary approaches to data abstraction. 1975.

[68] C. Rizkallah, J. Lim, Y. Nagashima, T. Sewell, Z. Chen, L. O’Connor,
T. C. Murray, G. Keller, and G. Klein. A framework for the automatic
formal verification of refinement from cogent to C. In ITP, volume
9807 of Lecture Notes in Computer Science, pages 323–340. Springer,
2016.

[69] T. Rompf. Lightweight Modular Staging and Embedded Compilers:

Abstraction Without Regret for High-Level High-Performance Pro-

gramming. PhD thesis, EPFL, 2012.

[70] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Odersky. Scala-
virtualized: Linguistic reuse for deep embeddings. Higher-Order and
Symbolic Computation (Special issue for PEPM’12).

[71] T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda,
N. Amin, G. Ofenbeck, A. Stojanov, Y. Klonatos, M. Dashti, C. Koch,
M. Püschel, and K. Olukotun. Go meta! A case for generative pro-
gramming and dsls in performance critical systems. In SNAPL, 2015.

[72] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. Commun.

ACM, 55(6):121–130, 2012.

[73] T. Rompf, A. K. Sujeeth, N. Amin, K. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data
structures in high-level programs. POPL, 2013.

[74] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky,
and K. Olukotun. Building-blocks for performance oriented dsls.
DSL, 2011.

[75] Scala-LMS. Tutorial: Automata-based regex matcher.
http://scalalms.github.io/tutorials/automata.html.

[76] Scala-LMS. Tutorial: From interpreter to compiler.
http://scalalms.github.io/tutorials/regex.html.

[77] A. Slesarenko, A. Filippov, and A. Romanov. First-class isomorphic
specialization by staged evaluation. In WGP, pages 35–46. ACM,
2014.

[78] C. Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1/2):11–49, 2000.

[79] T. S. Strickland, C. Dimoulas, A. Takikawa, and M. Felleisen. Con-
tracts for first-class classes. ACM Trans. Program. Lang. Syst.,

35(3):11, 2013.

[80] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt.
Chaperones and impersonators: run-time support for reasonable inter-
position. In G. T. Leavens and M. B. Dwyer, editors, Proceedings of

the 27th Annual ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA 2012,

part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages
943–962. ACM, 2012.

[81] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, M. Wu, A. R. Atreya,
M. Odersky, and K. Olukotun. OptiML: an implicitly parallel domain-
specific language for machine learning. In Proceedings of the 28th

International Conference on Machine Learning, ICML, 2011.

[82] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi, V. Popic,
M. Wu, A. Prokopec, V. Jovanovic, M. Odersky, and K. Olukotun.
Composition and reuse with compiled domain-specific languages. In
ECOOP, 2013.

[83] J. Svenningsson and E. Axelsson. Combining deep and shallow
embedding for EDSL. In TFP, 2012.

[84] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in
memory. In IEEE Symposium on Security and Privacy, pages 48–62.
IEEE Computer Society, 2013.

[85] W. Taha and T. Sheard. Metaml and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

[86] A. Takikawa, D. Feltey, E. Dean, M. Flatt, R. B. Findler, S. Tobin-
Hochstadt, and M. Felleisen. Towards practical gradual typing. In
Boyland [11], pages 4–27.

[87] A. Takikawa, D. Feltey, B. Greenman, M. New, J. Vitek, and M. Felleisen.
Is sound gradual typing dead? In POPL, 2016.

[88] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of typed scheme. In G. C. Necula and P. Wadler, editors, Proceedings

of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2008, San Francisco, California,

USA, January 7-12, 2008, pages 395–406. ACM, 2008.

[89] TrustInSoft. PolarSSL 1.1.8 verification kit, 2015.
http://trustinsoft.com/polarSSL_demo.pdf.

[90] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-
hoc. In POPL, pages 60–76, 1989.

[91] X. Wang, D. Lazar, N. Zeldovich, A. Chlipala, and Z. Tatlock. Jitk:
A trustworthy in-kernel interpreter infrastructure. In J. Flinn and
H. Levy, editors, 11th USENIX Symposium on Operating Systems De-

sign and Implementation, OSDI ’14, Broomfield, CO, USA, October

6-8, 2014., pages 33–47. USENIX Association, 2014.

[92] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical op-
timizations of software and the ATLAS project. Parallel Computing,
27(1-2):3–35, 2001.

[93] J. Yang and C. Hawblitzel. Safe to the last instruction: automated veri-
fication of a type-safe operating system. Commun. ACM, 54(12):123–
131, 2011.

859

http://blog.regehr.org/archives/1261
http://scala-lms.github.io/tutorials/automata.html
http://scala-lms.github.io/tutorials/regex.html
http://trust-in-soft.com/polarSSL_demo.pdf

	Introduction
	High-Level Low-Level Programming
	Deep Linguistic Reuse
	First-Class Now, Second-Class Later
	IR Transformations and Unparsing to C
	Problems

	Contracts
	Generative Verification
	Case Studies
	Generic Sorting
	Linear Algebra Library
	Regular Expression Matcher
	HTTP Parser

	Discussion
	Related Work
	Conclusions

