28,512 research outputs found
Experimental Results of Winglets on First, Second, and Third Generation Jet Transports
Results of wind tunnel investigations of four jet transport configurations representing both narrow and wide-body configurations and also a future advanced aerodynamic configuration are presented including performance and wing root bending moment data. The effects of winglets on the aerodynamic characteristics throughout the flight envelope were studied. The results indicate that winglets improved the cruise lift to drag ratio between 4 and 8 percent, depending on the transport configuration. The data also indicate that ratios of relative aerodynamic gain to relative structural weight penalty for winglets are 1.5 to 2.5 times those for wing-tip extensions. Over the complete range of flight conditions, winglets produce no adverse effects on buffet onset, lateral-directional stability, and aileron control effectiveness
Approximate theoretical performance evaluation for a diverging rocket
A simplified combustion model, which is motivated by available performance studies on the diverging rocket reactor, has been used as basis for an engine performance
evaluation. Comparison with conventional rocket configurations shows that an upper performance limit for the diverging reactor is comparable with performance
estimates for engines using an adiabatic work cycle. Development of the diverging reactor for engine applications may, however, offer some advantages for very hot, high-energy, propellant systems
Effect of an alternate winglet on the pressure and spanwise load distributions of a first generation jet transport wing
Pressure and spanwise load distributions on a first-generation jet transport semispan model at subsonic speeds are presented. The wind tunnel data were measured for the wing with and without an alternate winglet. The results show that the winglet affected outboard wing pressure distributions and increased the spanwise loads near the tip
Effect of winglets on a first-generation jet transport wing. 1: Longitudinal aerodynamic characteristics of a semispan model at subsonic speeds
The effects of winglets and a simple wing-tip extension on the aerodynamic forces and moments and the flow-field cross flow velocity vectors behind the wing tip of a first generation jet transport wing were investigated in the Langley 8-foot transonic pressure tunnel using a semi-span model. The test was conducted at Mach numbers of 0.30, 0.70, 0.75, 0.78, and 0.80. At a Mach number of 0.30, the configurations were tested with combinations of leading- and trailing-edge flaps
Effect of Winglets on a First-Generation Jet Transport Wing. 2: Pressure and Spanwise Load Distributions for a Semispan Model at High Subsonic Speeds
Pressure and spanwise load distributions on a first-generation jet transport semispan model at high subsonic speeds are presented for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. Selected data are discussed to show the general trends and effects of the various configurations
Shape of a liquid front upon dewetting
We examine the profile of a liquid front of a film that is dewetting a solid
substrate. Since volume is conserved, the material that once covered the
substrate is accumulated in a rim close to the three phase contact line.
Theoretically, such a profile of a Newtonian liquid resembles an exponentially
decaying harmonic oscillation that relaxes into the prepared film thickness.
For the first time, we were able to observe this behavior experimentally. A
non-Newtonian liquid - a polymer melt - however, behaves differently. Here,
viscoelastic properties come into play. We will demonstrate that by analyzing
the shape of the rim profile. On a nm scale, we gain access to the rheology of
a non-Newtonian liquid.Comment: 4 pages, 4 figure
Nucleation Induced Undulative Instability in Thin Films of nCB Liquid Crystals
A surface instability is reported in thin nematic films of 5CB and 8CB,
occurring near the nematic--isotropic phase transition.
Although this instability leads to patterns reminiscent of spinodal
dewetting, we show that it is actually based on a nucleation mechanism. Its
characteristic wavelength does not depend markedly on film thickness, but
strongly on the heating rate.Comment: 4 pages, 5 figure
Combinatorial models of rigidity and renormalization
We first introduce the percolation problems associated with the graph
theoretical concepts of -sparsity, and make contact with the physical
concepts of ordinary and rigidity percolation. We then devise a renormalization
transformation for -percolation problems, and investigate its domain of
validity. In particular, we show that it allows an exact solution of
-percolation problems on hierarchical graphs, for . We
introduce and solve by renormalization such a model, which has the interesting
feature of showing both ordinary percolation and rigidity percolation phase
transitions, depending on the values of the parameters.Comment: 22 pages, 6 figure
Involutive Categories and Monoids, with a GNS-correspondence
This paper develops the basics of the theory of involutive categories and
shows that such categories provide the natural setting in which to describe
involutive monoids. It is shown how categories of Eilenberg-Moore algebras of
involutive monads are involutive, with conjugation for modules and vector
spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS)
construction is identified as a bijective correspondence between states on
involutive monoids and inner products. This correspondence exists in arbritrary
involutive categories
Performing Nature's Footprint
publication-status: Published© 2011 The authors*RCUK funded Horizon projec
- …