1,065 research outputs found

    The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae

    Get PDF
    Water temperature is an important determinant in many aquatic biological processes, including the growth and development of malaria mosquito (Anopheles arabiensis and A. gambiae) immatures. Water turbidity affects water temperature, as suspended particles in a water column absorb and scatter sunlight and hence determine the extinction of solar radiation. To get a better understanding of the relationship between water turbidity and water temperature, a series of semi-natural larval habitats (diameter 0.32 m, water depth 0.16 m) with increasing water turbidity was created. Here we show that at midday (1300 hours) the upper water layer (thickness of 10 mm) of the water pool with the highest turbidity was on average 2.8 degrees C warmer than the same layer of the clearest water pool. Suspended soil particles increase the water temperature and furthermore change the temperature dynamics of small water collections during daytime, exposing malaria mosquito larvae, which live in the top water layer, longer to higher temperatures

    Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source

    Full text link
    As typically implemented, single photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand.Comment: 4 pages, LaTex, 2 figures, twocolumn and RevTex Style for PR

    A dual point description of mesoscopic superconductors

    Full text link
    We present an analysis of the magnetic response of a mesoscopic superconductor, i.e. a system of sizes comparable to the coherence length and to the London penetration depth. Our approach is based on special properties of the two dimensional Ginzburg-Landau equations, satisfied at the dual point (κ=12).(\kappa = \frac{1}{\sqrt{2}}). Closed expressions for the free energy and the magnetization of the superconductor are derived. A perturbative analysis in the vicinity of the dual point allows us to take into account vortex interactions, using a new scaling result for the free energy. In order to characterize the vortex/current interactions, we study vortex configurations that are out of thermodynamical equilibrium. Our predictions agree with the results of recent experiments performed on mesoscopic aluminium disks.Comment: revtex, 20 pages, 9 figure

    Proper ferroelastic phase transitions in thin epitaxial films with symmetry-conserving and symmetry-breaking misfit strains

    Full text link
    We study how the ferroelastic domain structure sets in in an epitaxial film of a material with second order proper ferroelastic transition. The domain structures considered are similar to either a1/a2/a1/a2a_{1}/a_{2}/a_{1}/a_{2} or c/a/c/ac/a/c/a structures in perovskite ferroelectrics. If the "extrinsic" misfit strain, not associated with the transition, does not break the symmetry of the high-temperature phase, the phase transition in the film occurs at somewhat lower temperature compared to the bulk. The loss of stability then occurs with respect to a sinusoidal strain wave, which evolves into the domain structure with practically the same geometry and approximately the same period. In the presence of the symmetry-breaking component of the misfit strain ("extrinsic" misfit) the character of the phase transition is qualitatively different. In this case it is a {\em topological} transition between single-domain and multi-domain states, which starts from a low density of the domain walls.Comment: 7 pages, 2 figures, REVTeX 3.

    Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface

    No full text
    Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry

    Strategies for individual phenotyping of linoleic and arachidonic Acid metabolism using an oral glucose tolerance test

    Get PDF
    The ability to restore homeostasis upon environmental challenges has been proposed as a measure for health. Metabolic profiling of plasma samples during the challenge response phase should offer a profound view on the flexibility of a phenotype to cope with daily stressors. Current data modeling approaches, however, struggle to extract biological descriptors from time-resolved metabolite profiles that are able to discriminate between different phenotypes. Thus, for the case of oxylipin responses in plasma upon an oral glucose tolerance test we developed a modeling approach that incorporates a priori biological pathway knowledge. The degradation pathways of arachidonic and linoleic acids were modeled using a regression model based on a pseudo-steady-state approximated model, resulting in a parameter A that summarizes the relative enzymatic activity in these pathways. Analysis of the phenotypic parameters As suggests that different phenotypes can be discriminated according to preferred relative activity of the arachidonic and linoleic pathway. Correlation analysis shows that there is little or no competition between the arachidonic and linoleic acid pathways, although they share the same enzyme

    Human Blood Lipoprotein Predictions from <sup>1</sup>H NMR Spectra:Protocol, Model Performances, and Cage of Covariance

    Get PDF
    Lipoprotein subfractions are biomarkers for the early diagnosis of cardiovascular diseases. The reference method, ultracentrifugation, for measuring lipoproteins is time-consuming, and there is a need to develop a rapid method for cohort screenings. This study presents partial least-squares regression models developed using 1H nuclear magnetic resonance (NMR) spectra and concentrations of lipoproteins as measured by ultracentrifugation on 316 healthy Danes. This study explores, for the first time, different regions of the 1H NMR spectrum representing signals of molecules in lipoprotein particles and different lipid species to develop parsimonious, reliable, and optimal prediction models. A total of 65 lipoprotein main and subfractions were predictable with high accuracy, Q2 of >0.6, using an optimal spectral region (1.4-0.6 ppm) containing methylene and methyl signals from lipids. The models were subsequently tested on an independent cohort of 290 healthy Swedes with predicted and reference values matching by up to 85-95%. In addition, an open software tool was developed to predict lipoproteins concentrations in human blood from standardized 1H NMR spectral recordings

    Comparing different freeze-out scenarios in azimuthal hadron correlations induced by fast partons

    Full text link
    I review the linearized hydrodynamical treatment of a fast parton traversing a perturbative quark-gluon plasma. Using numerical solutions for the medium's response to the fast parton, I obtain the medium's distribution function which is then used in a Cooper-Frye freeze-out prescription to obtain an azimuthal particle spectrum. Two different freeze-out scenarios are considered which yield significantly different results. I conclude that any meaningful comparison of azimuthal hadron correlation functions to RHIC data requires implementing a realistic freeze-out scenario in an expanding medium.Comment: Contribution to the Proceedings for 2008 Hot Quarks in Estes Park, CO, as accepted for publication in EPJ-
    • …
    corecore