170 research outputs found

    In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability

    Get PDF
    Dietary polyphenols in tea and wine have been associated with beneficial health effects. After ingestion, most polyphenols are metabolized by the colonic microbiota. The current study aimed at exploring the interindividual variation of gut microbial polyphenol bioconversion from 10 healthy human subjects. In vitro fecal batch fermentations simulating conditions in the distal colon were performed using polyphenols from black tea and a mixture of red wine and grape juice. Microbial bioconversion was monitored by NMR- and GC-MS-based profiling of diverse metabolites and phenolics. The complex polyphenol mixtures were degraded to a limited number of key metabolites. Each subject displayed a specific metabolite profile differing in composition and time courses as well as levels of these metabolites. Moreover, clear differences depending on the polyphenol sources were observed. In conclusion, varying metabolite pathways among individuals result in different metabolome profiles and therefore related health effects are hypothesized to differ between subjects

    A systematic analysis on tomato powder quality prepared by four conductive drying technologies

    Get PDF
    Four pilot-scale conductive dryers, namely a vacuum drum dryer (VDD), a drum dryer (DD), an agitated thin film dryer (ATFD) and a refractance window dryer (RWD), were used to dry tomato puree. Drying induced colour differences between the reconstituted puree and the original puree and strongly affected the volatile and non- volatile profiles of the powders. Principal component analysis (PCA) identified four separated groups corresponding to the different drying methods, indicating that the drying methods caused significant variance in compound profiles. Subsequently, pairwise comparison of different dried powders was performed by partial least square discriminant analysis (PLS-DA). This resulted in a selection of discriminative volatile and non-volatile markers. RWD and VDD produced powders with high volatile markers that may be related to aroma retention. Conversely, DD dried products contained more non-volatile markers that can be related to taste perception. ATFD processed powders had a lower level of discriminant compounds. Industrial relevance: Tomato products are frequently thermally processed and dehydrated. However, processing negatively affects the sensory quality of tomato products. In this study, four conductive drying processes, i.e. vacuum drum drying (VDD), drum drying (DD), agitated thin film drying (ATFD) and refractance window drying (RWD) were studied for being energy-efficient drying methods, while suitable for mild (e.g. due to the reduced pressure) drying of pastes and slurries, such as tomato puree. The pilot-scale drying experiments and subsequent statistical analyses of results on quality markers contributed to unravel the impact of the different conductive drying technologies on tomato powder quality. This study may be considered a starting point for selection of conductive drying technologies for the efficient production of high quality tomato powders and other vegetable powders

    Chemical fingerprints of emotional body odor

    Get PDF
    Chemical communication is common among animals. In humans, the chemical basis of social communication has remained a black box, despite psychological and neural research showing distinctive physiological, behavioral, and neural consequences of body odors emitted during emotional states like fear and happiness. We used a multidisciplinary approach to examine whether molecular cues could be associated with an emotional state in the emitter. Our research revealed that the volatile molecules transmitting different emotions to perceivers also have objectively different chemical properties. Chemical analysis of underarm sweat collected from the same donors in fearful, happy, and emotionally neutral states was conducted using untargeted two-dimensional (GC×GC) coupled with time of flight (ToF) MS-based profiling. Based on the multivariate statistical analyses, we find that the pattern of chemical volatiles (N = 1655 peaks) associated with fearful state is clearly different from that associated with (pleasant) neutral state. Happy sweat is also significantly different from the other states, chemically, but shows a bipolar pattern of overlap with fearful as well as neutral state. Candidate chemical classes associated with emotional and neutral sweat have been identified, specifically, linear aldehydes, ketones, esters, and cyclic molecules (5 rings). This research constitutes a first step toward identifying the chemical fingerprints of emotion.info:eu-repo/semantics/publishedVersio

    Between Metabolite Relationships: an essential aspect of metabolic change

    Get PDF
    Not only the levels of individual metabolites, but also the relations between the levels of different metabolites may indicate (experimentally induced) changes in a biological system. Component analysis methods in current ‘standard’ use for metabolomics, such as Principal Component Analysis (PCA), do not focus on changes in these relations. We therefore propose the concept of ‘Between Metabolite Relationships’ (BMRs): common changes in the covariance (or correlation) between all metabolites in an organism. Such structural changes may indicate metabolic change brought about by experimental manipulation but which are lost with standard data analysis methods. These BMRs can be analysed by the INdividual Differences SCALing (INDSCAL) method. First the BMR quantification is described and subsequently the INDSCAL method. Finally, two studies illustrate the power and the applicability of BMRs in metabolomics. The first study is about the induced plant response of cabbage to herbivory, of which BMRs are a considerable part. In the second study—a human nutritional intervention study of green tea extract—standard data analysis tools did not reveal any metabolic change, although the BMRs were considerably affected. The presented results show that BMRs can be easily implemented in a wide variety of metabolomic studies. They provide a new source of information to describe biological systems in a way that fits flawlessly into the next generation of systems biology questions, dealing with personalized responses

    Technical efficiency of peripheral health units in Pujehun district of Sierra Leone: a DEA application

    Get PDF
    BACKGROUND: The Data Envelopment Analysis (DEA) method has been fruitfully used in many countries in Asia, Europe and North America to shed light on the efficiency of health facilities and programmes. There is, however, a dearth of such studies in countries in sub-Saharan Africa. Since hospitals and health centres are important instruments in the efforts to scale up pro-poor cost-effective interventions aimed at achieving the United Nations Millennium Development Goals, decision-makers need to ensure that these health facilities provide efficient services. The objective of this study was to measure the technical efficiency (TE) and scale efficiency (SE) of a sample of public peripheral health units (PHUs) in Sierra Leone. METHODS: This study applied the Data Envelopment Analysis approach to investigate the TE and SE among a sample of 37 PHUs in Sierra Leone. RESULTS: Twenty-two (59%) of the 37 health units analysed were found to be technically inefficient, with an average score of 63% (standard deviation = 18%). On the other hand, 24 (65%) health units were found to be scale inefficient, with an average scale efficiency score of 72% (standard deviation = 17%). CONCLUSION: It is concluded that with the existing high levels of pure technical and scale inefficiency, scaling up of interventions to achieve both global and regional targets such as the MDG and Abuja health targets becomes far-fetched. In a country with per capita expenditure on health of about US$7, and with only 30% of its population having access to health services, it is demonstrated that efficiency savings can significantly augment the government's initiatives to cater for the unmet health care needs of the population. Therefore, we strongly recommend that Sierra Leone and all other countries in the Region should institutionalise health facility efficiency monitoring at the Ministry of Health headquarter (MoH/HQ) and at each health district headquarter

    Countdown to 2030 : tracking progress towards universal coverage for reproductive, maternal, newborn, and child health

    Get PDF
    Building upon the successes of Countdown to 2015, Countdown to 2030 aims to support the monitoring and measurement of women's, children's, and adolescents' health in the 81 countries that account for 95% of maternal and 90% of all child deaths worldwide. To achieve the Sustainable Development Goals by 2030, the rate of decline in prevalence of maternal and child mortality, stillbirths, and stunting among children younger than 5 years of age needs to accelerate considerably compared with progress since 2000. Such accelerations are only possible with a rapid scale-up of effective interventions to all population groups within countries (particularly in countries with the highest mortality and in those affected by conflict), supported by improvements in underlying socioeconomic conditions, including women's empowerment. Three main conclusions emerge from our analysis of intervention coverage, equity, and drivers of reproductive, maternal, newborn, and child health (RMNCH) in the 81 Countdown countries. First, even though strong progress was made in the coverage of many essential RMNCH interventions during the past decade, many countries are still a long way from universal coverage for most essential interventions. Furthermore, a growing body of evidence suggests that available services in many countries are of poor quality, limiting the potential effect on RMNCH outcomes. Second, within-country inequalities in intervention coverage are reducing in most countries (and are now almost non-existent in a few countries), but the pace is too slow. Third, health-sector (eg, weak country health systems) and non-health-sector drivers (eg, conflict settings) are major impediments to delivering high-quality services to all populations. Although more data for RMNCH interventions are available now, major data gaps still preclude the use of evidence to drive decision making and accountability. Countdown to 2030 is investing in improvements in measurement in several areas, such as quality of care and effective coverage, nutrition programmes, adolescent health, early childhood development, and evidence for conflict settings, and is prioritising its regional networks to enhance local analytic capacity and evidence for RMNCH

    Whole-Genome Sequencing Uncovers Two Loci for Coronary Artery Calcification and Identifies Arse as a Regulator of Vascular Calcification

    Get PDF
    Coronary artery calcification (CAC) is a measure of atherosclerosis and a well-established predictor of coronary artery disease (CAD) events. Here we describe a genome-wide association study (GWAS) of CAC in 22,400 participants from multiple ancestral groups. We confirmed associations with four known loci and identified two additional loci associated with CAC (ARSE and MMP16), with evidence of significant associations in replication analyses for both novel loci. Functional assays of ARSE and MMP16 in human vascular smooth muscle cells (VSMCs) demonstrate that ARSE is a promoter of VSMC calcification and VSMC phenotype switching from a contractile to a calcifying or osteogenic phenotype. Furthermore, we show that the association of variants near ARSE with reduced CAC is likely explained by reduced ARSE expression with the G allele of enhancer variant rs5982944. Our study highlights ARSE as an important contributor to atherosclerotic vascular calcification, and a potential drug target for vascular calcific disease
    corecore