27,022 research outputs found

    Cubic Dresselhaus Spin-Orbit Coupling in 2D Electron Quantum Dots

    Full text link
    We study effects of the oft-neglected cubic Dresselhaus spin-orbit coupling (i.e., p3\propto p^3) in GaAs/AlGaAs quantum dots. Using a semiclassical billiard model, we estimate the magnitude of the spin-orbit induced avoided crossings in a closed quantum dot in a Zeeman field. Using these results, together with previous analyses based on random matrix theory, we calculate corresponding effects on the conductance through an open quantum dot. Combining our results with an experiment on conductance through an 8 um^2 quantum dot [D M Zumbuhl et al., Phys. Rev. B 72, 081305 (2005)] suggests that 1) the GaAs Dresselhaus coupling constant, γ\gamma, is approximately 9 eVA^3, significantly less than the commonly cited value of 27.5 eVA^3 and 2) the majority of the spin-flip component of spin-orbit coupling can come from the cubic Dresselhaus term.Comment: 4 pages plus supplementary tabl

    The Effect of Treatment of Acidosis on Calcium Balance in Patients with Chronic Azotemic Renal Disease

    Get PDF
    Small but statistically significant negative calcium balances were found in each of eight studies in seven patients with chronic azotemic renal disease when stable metabolic acidosis was present. Only small quantities of calcium were excreted in the urine, but fecal calcium excretion equaled or exceeded dietary intake. Complete and continuous correction of acidosis by NaHCO3 therapy reduced both urinary and fecal calcium excretion and produced a daily calcium balance indistinguishable from zero. Apparent acid retention was found throughout the studies during acidosis, despite no further reduction of the serum bicarbonate concentration. The negative calcium balances that accompanied acid retention support the suggestion that slow titration of alkaline bone salts provides an additional buffer reservoir in chronic metabolic acidosis. The treatment of metabolic acidosis prevented further calcium losses but did not induce net calcium retention. It is suggested that the normal homeostatic responses of the body to the alterations in ionized calcium and calcium distribution produced by raising the serum bicarbonate might paradoxically retard the repair of skeletal calcium deficits

    The study of parameter optimization in vehicle-borne tracking systems Final technical report

    Get PDF
    Data smoothing technique for parameter optimization in free flight orbit vehicle-borne tracking system

    Simulation of fermionic lattice models in two dimensions with Projected Entangled-Pair States: Next-nearest neighbor Hamiltonians

    Get PDF
    In a recent contribution [Phys. Rev. B 81, 165104 (2010)] fermionic Projected Entangled-Pair States (PEPS) were used to approximate the ground state of free and interacting spinless fermion models, as well as the tt-JJ model. This paper revisits these three models in the presence of an additional next-nearest hopping amplitude in the Hamiltonian. First we explain how to account for next-nearest neighbor Hamiltonian terms in the context of fermionic PEPS algorithms based on simulating time evolution. Then we present benchmark calculations for the three models of fermions, and compare our results against analytical, mean-field, and variational Monte Carlo results, respectively. Consistent with previous computations restricted to nearest-neighbor Hamiltonians, we systematically obtain more accurate (or better converged) results for gapped phases than for gapless ones.Comment: 10 pages, 11 figures, minor change

    Mechanical, Electrical, and Magnetic Properties of Ni Nanocontacts

    Get PDF
    The dynamic deformation upon stretching of Ni nanowires as those formed with mechanically controllable break junctions or with a scanning tunneling microscope is studied both experimentally and theoretically. Molecular dynamics simulations of the breaking process are performed. In addition, and in order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.Comment: 5 pages, 6 figure

    Instructor perspectives on iteration during upper-division optics lab activities

    Full text link
    Although developing proficiency with modeling is a nationally endorsed learning outcome for upper-division undergraduate physics lab courses, no corresponding research-based assessments exist. Our longterm goal is to develop assessments of students' modeling ability that are relevant across multiple upper-division lab contexts. To this end, we interviewed 19 instructors from 16 institutions about optics lab activities that incorporate photodiodes. Interviews focused on how those activities were designed to engage students in some aspects of modeling. We find that, according to many interviewees, iteration is an important aspect of modeling. In addition, interviewees described four distinct types of iteration: revising apparatuses, revising models, revising data-taking procedures, and repeating data collection using existing apparatuses and procedures. We provide examples of each type of iteration, and discuss implications for the development of future modeling assessments.Comment: 4 pages, 1 figure; under revie

    Realizable Hamiltonians for Universal Adiabatic Quantum Computers

    Get PDF
    It has been established that local lattice spin Hamiltonians can be used for universal adiabatic quantum computation. However, the 2-local model Hamiltonians used in these proofs are general and hence do not limit the types of interactions required between spins. To address this concern, the present paper provides two simple model Hamiltonians that are of practical interest to experimentalists working towards the realization of a universal adiabatic quantum computer. The model Hamiltonians presented are the simplest known QMA-complete 2-local Hamiltonians. The 2-local Ising model with 1-local transverse field which has been realized using an array of technologies, is perhaps the simplest quantum spin model but is unlikely to be universal for adiabatic quantum computation. We demonstrate that this model can be rendered universal and QMA-complete by adding a tunable 2-local transverse XX coupling. We also show the universality and QMA-completeness of spin models with only 1-local Z and X fields and 2-local ZX interactions.Comment: Paper revised and extended to improve clarity; to appear in Physical Review

    A Deformable Model for Magnetic Vortex Pinning

    Get PDF
    A two-parameter analytical model of the magnetic vortex in a thin disk of soft magnetic material is constructed. The model is capable of describing the change in evolution of net vortex state magnetization and of core position when the vortex core interacts with a magnetic pinning site. The model employs a piecewise, physically continuous, magnetization distribution obtained by the merger of two extensively used one-parameter analytical models of the vortex state in a disk. Through comparison to numerical simulations of ideal disks with and without pinning sites, the model is found to accurately predict the magnetization, vortex position, hysteretic transitions, and 2-D displacement of the vortex in the presence of pinning sites. The model will be applicable to the quantitative determination of vortex pinning energies from measurements of magnetization.Comment: 27 pages, 7 figures, including supplementary information, ancillary files:3 supplementary movie

    Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    Full text link
    We investigate students' sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students' interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain---namely, upper-division physics labs---they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.Comment: 22 pages, 3 tables, submitted to Phys. Rev. PE
    corecore