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a b s t r a c t

A two-parameter analytical model is constructed to describe a thin, magnetically soft, circular disk in the
vortex state. The model is capable of describing the change in evolution of net magnetization and of
vortex core position when the core interacts with a magnetic pinning site. The basis of the two-
parameter model is formed by a piecewise, physically continuous, magnetization distribution con-
structed with two regions described by different one-parameter models. Benchmarking against
numerical simulations of ideal disks with and without pinning sites shows that the model provides
accurate predictions of magnetization, hysteretic transitions, and 2-D displacement of the vortex core in
the presence of pinning sites. The demonstrated accuracy of the model supports its use as an empirical
tool to extract quantitative maps of vortex pinning energies from measurements of magnetization.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Interest in magnetic vortices [1,2] in thin disks has grown
dramatically over the past two decades. Topological structures
such as vortices are stable, manipulable objects that show promise
as logic elements or storage media in spintronics applications [3].
The thin soft magnetic disk, the prototypical system containing a
vortex, has therefore been subject to extensive investigation.
Properties studied include structure [4,5], dynamical modes [6–8],
annihilation [9,10], and creation [9,11–13]. As each aspect of
vortex physics is probed experimentally, and considered for
technological applications, theoretical understanding via simula-
tion and modeling is also advanced. Modeling is particularly
important in the case of the thin ferromagnetic disk as it presents
a well-defined system amenable to description by an analytical
approach.

Extension of analytical models to include pinning effects has
gained increasing importance. The interaction of vortex cores or
domain walls with film inhomogeneities has been a topic of
significant recent interest. Geometric defects or magnetic impu-
rities can increase or decrease the energetic cost of the topological
magnetic structures [14], creating preferential locations for
domain walls or otherwise altering the magnetization distribution.
In the disk system, direct observations of vortex state pinning have
been made with Lorentz microscopy [15] while the effect on

vortex gyration has been observed with time-resolved magneto-
optical Kerr effect microscopy [16–19] and electronic techniques
[20]. Incorporation of pinning potentials into existing analytical
models has permitted a qualitative description of the position of
the vortex and its reduced displacement susceptibility [21]. This
approach, however, is insufficient for quantitative applications.
Recent work using nanomechanical torque magnetometry has
provided direct observation of the Barkhausen steps associated
with jumps in core position [22]. Quantitative analysis of these
results necessitates the development and benchmarking of a
model that permits a quantitative description of both net disk
magnetization and vortex core position in the presence of pinning
effects. To accomplish this, the potential for evolution of the
magnetic moment of the outer regions of the disk, decoupled
from the vortex core position, must be acknowledged. A two-
parameter description permits the inclusion of a dipole-exchange
spring coupling of the core to a parameterized outer magnetic
moment. Presented here is a detailed description of the construc-
tion of the two-parameter model and verification of its accuracy
against numerical simulations of magnetic vortices in disks featur-
ing pinning sites.

1.1. The vortex state and existing models

In zero field, the vortex state in a disk represents the ground
state configuration for a wide variety of disk aspect ratios. Over
most of the disk, a circularly symmetric in-plane magnetization
distribution maintains magnetization tangential to the disk
boundary and reduces dipolar energy. This necessitates a higher
exchange energy relative to the uniformly magnetized state, and
results in an out-of-plane magnetized core at the disk center
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featuring high energy density. For clarity, the in-plane region
outside of the core is referred to as the skirt. Analytical models
of the vortex state aim to describe the net energy and magnetiza-
tion in terms of a reduced set of parameters, often vortex core
position. This description immediately implies the potential for an
empirical ruler to extract core position from magnetization,
providing a practical motivation for models with high accuracy.

The zero-field vortex state ansatz was first developed for the
magnetic disk by Aharoni [23]. Further work by Usov and
Peschanny [4] determined an exchange optimized functional form
of the core magnetization profile exhibiting good agreement with
simulation [24] and experimental observations [5]. Computation
of the evolution of the state with field presents a more challenging
problem. Extended models built on this initial work use simplify-
ing assumptions to compute magnetization distributions with a
displaced core. The Rigid Vortex Model (RVM) considers the
displacement of the core under the assumption that the magne-
tization distribution developed by Usov and Peschany simply
translates rigidly relative to the disk boundary, remaining circu-
larly symmetric around the core [25,26]. Magnetization distribu-
tions that look more realistic may be computed by minimization of
the exchange energy using prescribed boundary conditions; this
leads to the so-called Two Vortex Model (TVM) [27,28]. The
assumptions about rigidity or boundary conditions lend particular
strengths to each type of model: higher order versions of the RVM
provide effective descriptions of the magnetic susceptibility of the
displaced vortex [10], while the TVM provides a good description
of low field vortex core dynamics [29–31]. The RVM and TVM
make critical contributions to the two-parameter model discussed
here and, therefore, are introduced in the following sections. An
additional modification to the RVM is also introduced that sig-
nificantly improves its performance.

2. Theory

2.1. The rigid vortex model

The RVM is derived by considering the zero field vortex
magnetization distribution [23,4] to be immutable, and then
translating that distribution relative to the physical boundary of
the disk [25,26] (Fig. 1). To solve the model, the energetic
contributions from demagnetization charges, exchange and the
applied field must be computed in terms of the core position. Here,
a soft anisotropy free material will be considered. In terms of the
reduced field, h¼H/MS, the 3rd order expression for the total
normalized energy of a disk with a radius R and thickness L
described by the RVM [10] may be expressed as

Etot
μ0M

2
s V

¼ β
2
b2�h b�b3

8

 !
; ð1Þ

where the normalized core displacement s¼Δr=R is equal to b,

V is the disk volume, β¼ FðL;RÞ�R2
o=R

2 is a constant describing
the demagnetization energy and exchange energy with

Ro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=μoM

2
S

q
denoting the exchange length. In the derivation

of the RVM, the factor FðL;RÞ is found to be equal to the
demagnetization factor for a disk uniformly magnetized in plane
[25].

Some consideration must be given to this factor in the context
of a disk made of a soft magnetic material. Any inspection of
displaced vortex magnetization distributions in simulated disks
composed of permalloy or a similar soft material reveals the rigid
assumption is flawed (Fig. 2). The magnetic moments near the
boundary of the disk will always rotate to a certain degree to
partially maintain a tangential boundary condition and lower the

total demagnetization energy by redistributing uncompensated
edge dipoles into the volume. In computation of the energy of
uniformly magnetized particles, it is possible to account the net
reduction by solving for the magnetic potential at the disk
boundary taking into account a discontinuity in the rotational
susceptibility of the material inside and outside of the disk. The

Fig. 1. Schematics depicting the evolution of the magnetization distribution as the
vortex core is displaced for various analytical models. The red lines indicate
contours of constant jMyj magnetization while the color gradient circular arrows
indicate an in-plane tangential boundary condition for the magnetization. The TVM
holds a tangential boundary condition as the vortex core is displaced. The RVM
simply translates the circularly symmetric zero field magnetization distribution
relative to the disk. The DVPM incorporates a central flexible TVM-described region
into an RVM-described annulus in creating a piecewise continuous magnetization
distribution. Major energetic contributions arise from the demagnetization charges
computed in each model. In the TVM, only volume demagnetization charges are
present (purple shading). In the RVM, only edge demagnetization charges are
accounted for (red line). In the DVPM both are present. Consequently, since the
RVM parameterizes all demagnetization charges as edge charges, the computed
density of edge charges of the RVM annulus must be modified for use in the DVPM.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

Fig. 2. Contours of constant magnetization aid visualization and comparison of the
magnetization distributions predicted for a displaced vortex core by the RVM and
the TVM with no side charges, against simulation. Of critical importance is the fact
that the TVM contours lag behind the contour lines of the simulation everywhere,
indicating an underestimate of the total magnetic moment. By contrast the RVM
contours lead and lag the simulation contours, indicating a smaller error in the
computed total magnetic moment. Here the contours for jMy=MS j ¼ 0:4 and 0.8 are
shown, compared against a simulation for a disk with a diameter of 1 μm, and
thickness of 40 nm. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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correction is applied only to the energy and does not explicitly
compute the deformation of the magnetization. This correction is
known as the μn correction [32,33], and results in a constant factor
applied to reduce the demagnetization energy that is incorporated
into the demagnetization factor.

For a disk in the vortex state, the rigid assumption places
demagnetization charges exclusively on the disk perimeter.
Locally, the symmetry of uniform magnetization at a boundary is
maintained, and it is therefore possible to compute the same factor
for the reduction in demagnetization energy as in the uniform
case. The amount that the μn correction reduces the demagnetiza-
tion energy is dependent on the rotational susceptibility of the
material. For a low anisotropy, soft material such as permalloy, the
effective susceptibility is very high. Relative susceptibilities 4100
provide approximately the same reduction as an infinite value
[34]. For comparison, approximating a relative susceptibility of
� 49 (equal to that of iron [32]) as infinite would yield only a
o0:8% error in the correction for an iron disk. Consequently,
when considering soft, low anisotropy disks, it is reasonable to
replace the factor FðL;RÞ in Eq. (1) with a corrected demagnetiza-
tion factor, FcðL;RÞ, computed for an infinite value of the suscept-
ibility. The value of FcðL;RÞ may be computed rigorously [34], and
remains a fixed parameter for a given disk size. No additional fit
parameter is introduced.

Solving the RVM permits calculation of the vortex displacement

as a function of field, boðhÞ ¼ ð�4βþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2þ6 h2

q
Þ=3 h, and the

magnetization moðhÞ ¼MoðhÞ=MS ¼ bo�b3o=8. Note that removing
the third order term in the magnetization, and consequently the
external field energy contributing to bo(h), reduces the model to
the second order RVM [25,26] with moðhÞ ¼ boðhÞ ¼ h=β.

The application of the susceptibility correction may be verified
by comparing the RVM predictions made using a corrected
demagnetization factor against simulation and computations
using an uncorrected value. Without correction, the energetic cost
of vortex displacement is too large and the RVM offers a poor
prediction of both vortex position and magnetization as a function
of field (Fig. 3). By comparison, with correction, the RVM provides
excellent estimates and serves as a useful tool for predicting both
quantities in ideal disks. In other words, the RVM provides a good
estimate of the net magnetization as a function of core displace-
ment, and to create a useful model, only the energetic cost of
displacement must be adjusted.

2.2. The two vortex model

The TVM is derived by setting a boundary condition and
computing the magnetization distribution that minimizes the
exchange energy for a given vortex core displacement [27,35]. The
most widely used version of the TVM permits no demagnetization
charges on the disk boundary [27,29]. This forces all demagnetization
charges to be redistributed into the volume of the disk, significantly
reducing the demagnetization energy, and also introducing promi-
nent warping of the circular symmetry in the skirt magnetization. For
disks with a radius significantly larger than the core radius, con-
tributions from the core may be neglected [27]. In the same form as
used for the RVM, the total normalized energy may be written down
to second order for a large disk as described by the TVM:

Etot
μ0M

2
s V

¼ α
2
a2�ξha; ð2Þ

where the normalized core displacement s¼Δr=R is equal to a/2,
α¼ RF1ðL;RÞ=L�R2

o=2R
2 incorporates the demagnetization energy

and exchange energy, and ξ is a constant (�10/29). The function
F1ðL;RÞ � kðL=RÞ2 with k¼0.08827, is an equivalent demagnetization
factor describing the volume magnetostatic charges resulting from

flexing of the magnetization distribution. As before, minimization
with respect to a allows computation of aoðhÞ ¼ ξh=α and magneti-
zation moðhÞ ¼ ξaoðhÞ.

The TVM with a tangential boundary condition over-enforces
the elimination of perimeter demagnetization charges. Consequently,
though it appears more realistic than the RVM when compared to
simulation, the computed magnetization distribution is still incorrect
(Fig. 2). In particular, the pinning of the magnetization of the
boundary suppresses the relatively large magnetic moment that
may develop near the disk edges as the core is displaced by field.
This leads to a systematic underestimate in the magnetization as a
function of applied field (Fig. 3). The TVM, however, does provide a
reasonably accurate computation of core displacement as well as
excellent predictions of core dynamics [29,7,30,31].

2.3. Effects of pinning

In the presence of a pinning site the vortex core position is no
longer dictated solely by torques exerted on the core by the
surrounding in-plane magnetization distribution. The pinning
sites create preferential locations for the core within the disk.
When the core is in a preferential site, the energy cost of further
core displacement is increased and this necessarily influences how
the magnetic moment in the skirt will evolve. Under increasing

Fig. 3. Computation of magnetization (a) and vortex core displacement (b) as a
function of field is compared against simulation for the RVM, the susceptibility
corrected RVM, and the TVM with no side charges. The uncorrected RVM provides
poor estimates of both quantities for the three simulations shown. By comparison,
the corrected RVM provides excellent estimates of both quantities. The TVM
provides good estimates of the core displacement, but for disks in the experimen-
tally pertinent (�μm) size range, provides an underestimate of the magnetization.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

J.A.J. Burgess et al. / Journal of Magnetism and Magnetic Materials 361 (2014) 140–149142



field, the magnetization of the disk will continue to grow despite
the pinning. This results in the magnetic moment away from the
core increasing preferentially.

Examining the angular deflection of contours of constant
magnetization in a simulation makes the behaviour of the pinned
magnetization distribution easier to picture. The contours exhibit a
deflection with a non-monotonic evolution as the vortex traverses
the pinning site (Fig. 4). During pinning, the contours begin to
return to the original (zero field) angles of deflection, partially
restoring the circular symmetry of the magnetization distribution.
This contrasts to contour evolution in an ideal (pinning site free)
disk, where the angle of deflection changes monotonically with
core displacement.

The change in deformation represents a significant energetic
influence on the core. The flexible nature of the magnetization
distribution acts as a combined dipole-exchange spring. The spring
can absorb energy, allowing a core to jump ahead to a preferential
site. Similarly, stored energy lowers as the core is trapped in the
pinning site, permitting the core to stay in the site longer. This has

a prominent effect on observed hysteresis in pinning sites, as well
as on computation of depinning energy barriers.

Both the RVM and TVM link the computed model magnetiza-
tion directly to the vortex core displacement in the disk using only
a single parameter.2 This limitation renders the models incapable
of computing, or even qualitatively describing the non-monotonic
evolution of the deformation. However a combination of these two
models may be constructed, modeled after the observed magne-
tization distribution, and incorporating both rigid translation and
flexible deformation.

2.4. The deformable vortex pinning model

The correct computation of the net magnetic moment of a disk
containing a displaced vortex becomes particularly important when
considering the use of a field to push a vortex core through a pinning
potential. The goal is then to construct a model that incorporates the
accurate computation of the magnetic moment in the outer regions
of the skirt, as featured in the corrected RVM, along with a flexible
component that allows this magnetic moment to be decoupled from
the vortex position. This is the approach followed here by use of a
piecewise model that we call the Deformable Vortex Pinning Model
(DVPM). In the DVPM, the disk is divided into two circularly
symmetric regions. An outer annular section described by the RVM
surrounds an inner section described by the TVM with a no side
charge (tangential) boundary condition. The outer section translates
rigidly. The inner section translates along with the outer annulus
while also providing deformation. The tangential boundary condition
ensures that the magnetization distribution remains piecewise con-
tinuous. The outer RVM annulus parameterizes the dominant mag-
netic moment developed in the outer regions of the disk, while the
flexible TVM center parameterizes the dipole exchange coupling
between this outer moment and the core. The use of the RVM for the
outer ring is motivated by its accuracy in computing the magnetic
moment. It is therefore used for the section of the disk that
contributes the largest magnetic moment. Inside, the TVM with no
side charges must be used to preserve piecewise continuity in the
magnetization distribution.

With the two contributing models introduced, the DVPM may
now be constructed. The disk radius remains R, while the radius of
the inner region will be denoted R1. As with the RVM and TVM,
magnetocrystalline anisotropy is neglected. The total energy of the
combined piecewise model may be written down in terms of the
energies of the two component models:

Etot
μ0M

2
s V

¼ β'
2
b'2�h b'�b'3

8

 !
þγ

α'
2
a'2�ξha'

� �
; ð3Þ

where b' is the normalized displacement of the outer RVM shell,
and a'=2¼Δr1=R1 is the central TVM core displacement normal-
ized to R1. The factor γ ¼ R2

1=R
2 scales the energy contributions of

the central region according to its size. The total core displacement
is s¼Δr=RþΔr1=R¼ b'þR1a'=2R. The corresponding normalized
magnetization is m¼ b'�b'3=8þγξa'. The factors β' and α'
describe the demagnetization and exchange energies of the
annulus and central region respectively as β and α did for the
RVM and TVM. For the inner region α'¼ R1F1ðL;R1Þ=L�R2

o=2R
2
1. For

the annulus, β' requires careful consideration. The corrected RVM
computes the correct energy cost of vortex displacement in the
absence of pinning. It is clear that simply adding an independent
flexible region will disrupt the parameterization of the magnetization

Fig. 4. (a) Contours of constant jMyj value are computed from a simulation for two
different fields and overlaid such that the vortex core positions overlap. (b) The
same type of plot is produced for the core trapped in a pinning site. The pinned
contours qualitatively shift in the opposite direction between low field and high
field, compared to case (a). (c) The normalized and averaged angular deflection of
contours is shown as a function of field as the core moves through the pinning site.
The angles are measured between the vertical ðjMxj ¼ 1Þ line and the intersection of
the contours with a circle of radius R=2 centered on the vortex core. This reflects
the net deformation of the magnetization distribution inside of R/2. For a pinned
core and increasing field, the angular deflections reduce, partially restoring the
circular symmetry of the zero field vortex state. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)

2 The TVM uses a second parameter to describe distortions of the core profile
under deflection, however this parameter does not have a significant influence on
the overall disk magnetization or core displacement. It is therefore unsuitable for
describing the influence of the skirt magnetization on the core.

J.A.J. Burgess et al. / Journal of Magnetism and Magnetic Materials 361 (2014) 140–149 143



and energy, resulting in susceptibilities (magnetic and positional) that
are too large. Since the dominant energetic contribution arises from
the demagnetization energy, it follows that, in order to preserve the
total energetic cost of vortex displacement, the demagnetization cost
of rigid translation of the annulus should be increased. Scaling the
demagnetization energy of the central region suggests that the
demagnetization factor of the outer shell requires an increase of
ðR1=RÞ2ð2R1=LÞF1ðR1; LÞ for a central region of radius R1.

The physical meaning of the increase in the shell demagnetiza-
tion factor may be elucidated by considering it in the context of
the susceptibility correction. Effectively, the susceptibility correc-
tion permits the RVM to parameterize the reduced demagnetiza-
tion energy and increased displacement of the vortex core arising
due to flexing of the magnetization distribution. Inclusion of a
flexible central region explicitly accounts for some of the flexing
and demagnetization energy over the disk (Fig. 1). Hence, in the
DVPM, some of the change is accounted for, consequently the
susceptibility correction should be decreased. Indeed, comparing
a linear interpolation between the corrected (Fc) and uncorrected
(Fnc) demagnetization factors of the form FðL;R;R1Þ ¼
ð1�R1=RÞFcðL;RÞþðR1=RÞFncðL;RÞ to the estimated change in the
RVM shell demagnetization factor described previously shows that
the deviation between the two does not exceed 10% over the range
R1/R¼0 to 1. This corroborates the application of susceptibility
correction and its physical interpretation in the context of a
rigid model. The factor β' is then β'¼ FðL;R;R1Þ�R2

o=R
2 where

the annular demagnetization factor is either FðL;R;R1Þ ¼
ð1�R1=RÞFcðL;RÞþðR1=RÞFncðL;RÞ or FðL;R;R1Þ ¼ ð1�R1=RÞFcðL;RÞþ
ðR1=RÞ2ð2R1=LÞF1ðR1; LÞ depending on the choice of using the

analytic estimate of the demagnetization increase, or the suscept-
ibility correction interpolation. Here interpolation is chosen over
the analytic estimate of the rebalancing energy to maintain the
limiting values at the susceptibility-corrected demagnetization
factor and the uncorrected value.

Solving the model is a simple matter of computing the optimal
values of b' and a' as a function of field. In the ideal disk case, the
optimal solution reduces to the decoupled solution for each section
separately with the same expressions for b'oðhÞ and a'oðhÞ as before for
the RVM and TVM, but with β' and α' replacing β and α respectively.

Only one free parameter remains, the radius of the inner TVM
section. The influence of R1 is mitigated by the R1 dependence of
the demagnetization factor used for the annulus, however the
choice of R1 is not entirely arbitrary. The constructed model can
behave as the RVM in one limit (R1¼0), or the TVM in the other
limit (R1¼R). Consequently, the model can exhibit the failings (and
successes) of the RVM in one limit, and the TVM in the other.
Optimal computation of the properties, including good prediction
of the magnetization as a function of core position and dynamical
modes, of the vortex state require an intermediate R1. This can be
estimated by minimizing the deviation of the DVPM from the
successful predictions of the RVM (m(h), s(h)) and the TVM
(gyrotropic frequency). In general, a reasonable agreement with
all three parameters can be found for R1 values of approximately
R/2. In more detail, the optimal R1 has a weak dependence on the
radius of the disk. Computation of the relative differences between
the DVPM predictions and those of the two other models permits
identification of a solution for R1 that maintains good agreement
for all three metrics simultaneously. For example, for disks of varying

Fig. 5. (a) The computed m–h curves from four models (RVM corrected and uncorrected, DVPM, TVM) are compared against a simulation of a 1 μm diameter, 30 nm thick
disk with MS¼800 kA/m. (b) The computed normalized vortex displacement as a function of field is compared against the simulation. The legend inset in panel (b) applies to
both (a) and (b). Only the RVM with a susceptibility-corrected demagnetization factor and the DVPM describe both position and magnetization accurately for displacement
so1=2. Inset in (a) is a comparison of corrected demagnetization factor as a function of R1 used in the DVPM computed by interpolation (solid red) and from
demagnetization energies (black). (c) The computed initial susceptibility is compared against simulation for disks of varying radius (R) and thickness (L). Squares denote
R¼250 nm, circles R¼500 nm, and triangles R¼1800 nm. All simulations use MS¼800 kA/m except the R¼1.8 μmwhich used MS¼715 kA/m. (d) Using the same simulation
parameters, the frequency of the gyrotropic mode was computed. The legend in (c) applies to panel (d) as well. Only the DVPM agrees well with both the initial susceptibility
and the gyrotropic frequency. For (c) and (d) calculations were performed holding R¼500 nm with variable thickness. All DVPM calculations in panels a-d use R1¼R/2. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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radius between 200 nm and 2000 nm with thickness 40 nm, a
solution R1 ¼ Rð0:6�ð5=3ÞðL=RÞÞ maintains less than 10% difference
in the DVPM predictions for the initial magnetic ðχðh¼ 0ÞÞ and
positional ðdsðh¼ 0Þ=dhÞ susceptibilities compared to the RVM and
the DVPM prediction for the gyrotropic mode compared to the TVM.
Deviating from this solution for R1ðRÞ results in a rapid increase in
the relative difference of at least one of the DVPM predictions,
indicating that it is close to the optimal choice of R1 for general
application of the DVPM. This semi-analytic method of computing a
suitable R1 value provides a useful starting point for comparison of
analytic predictions and simulation.

3. Results

3.1. Application to the ideal disk

From Eqs. (1) to (3) the ideal disk behaviour of each model
may be computed and compared to Landau–Lifshitz–Gilbert

micromagnetic simulation.3 To mimic quasistatic behaviour, time
integration with a damping factor of 1.0 was used. All simulations
were performed on a 2-D 5 nm�5 nm� thickness grid using an
exchange stiffness constant of 1.05�10�11 J/m, with MS values
between 700 kA/m and 800 kA/m and 20 nm, 30 nm or 40 nm
thickness. All calculations with the model used an exchange length
of 5.85 nm and MS values matching the simulations.

Comparison of the mðhÞ ¼MðH=MSÞ=ðμoMSVÞ and sðhÞ ¼
ΔrðH=MSÞ=R curves are shown in Fig. 5a and b. Clearly the
susceptibility-corrected 3rd order RVM provides the best estimate
of both magnetization and vortex displacement as a function of
field, while the uncorrected version exhibits the poorest perfor-
mance. Both the DVPM and TVM provide good estimates of vortex
position with field for displacements up to displacements of R/2,
but of the two, only the DVPM simultaneously gives a good
description of the magnetization.

Two other metrics have been applied to evaluate the perfor-
mance of the analytical models near zero field in past work: initial
susceptibility, and the frequency of the lowest order excitation
mode of gyrotropic vortex motion. Both of these parameters
primarily depend on the aspect ratio of the disks. Initial suscept-
ibility is easily calculated from mo(h) for each model. Using the
collective coordinate approach [36], it may be shown that the
gyrotropic mode frequency is f o ¼ κ=2πG where G¼ 2πLMS=γo
with γo ¼ 1:76� 1011s�1T �1, and dEtot=dr¼ κr [29]. For the RVM
and TVM, κ is β and 4α respectively. For the piecewise combined
model, κ may be computed in the unpinned and zero field case:

κ ¼ 4ðα'þγξ2β'Þβ'α'
ð2α'þρξβ'Þ2

: ð4Þ

Comparisons between simulation and computed results for
initial susceptibility and gyrotropic mode frequency are shown in
Fig. 5c and d. Dynamic simulations were performed using a
realistic damping factor (0.02) but otherwise matched the para-
meters used in the previous simulations. The poor performances
for magnetization description of the TVM and uncorrected RVM
manifest as incorrect estimations of the initial susceptibility.
However, both approach the simulation results for squat disks,
corroborating previous results [25,29] and demonstrating the
general utility of these models. By comparison, the DVPM and
corrected RVM provide excellent estimates of initial susceptibility
for all aspect ratios investigated. Previously, only the TVM has
provided reasonable estimates for the gyrotropic frequency of the
vortex state while the RVM has provided poor estimates. The
success of the TVM is reproduced here, as is the failure of the
uncorrected RVM. The susceptibility correction improves the RVM
prediction, however it fails to match the performance of the TVM
in the prediction of fo. However, the DVPM provides comparable
performance to the TVM for low aspect ratios and improved
performance with more squat ideal disks.

3.2. Application to a single pinning site

Having demonstrated the performance of the piecewise model
in a perfect disk, pinning may now be considered. Adding pinning
to the models is accomplished by adding functions of the form
Epðb'þR1a'=2R�XpÞ for a pinning site located at Xp to Eq. (3), or of
the form Epðb�XpÞ for the RVM in Eq. (1). For the RVM case, simply
solving for the minima in energy permits a full solution of the
problem. For the DVPM, in pinning situations the solution for b'
and a' no longer reduce to the solutions for each component
independent of one another. Plotting the total energy including

Fig. 6. The DVPM is solved in a 2-D energy space with axes for rigid displacement
of the RVM annulus ðb'Þ and flexible displacement inside the central TVM region
(a'=4 for R1 ¼ R=2). (a) A 2-D plot of the energy landscape (color gradient) in the
DVPM computed for a 1 μm diameter, 40 nm disk is shown for a fixed field value of
h¼0.025 using an MS¼800 kA/m. This is the 2-D landscape that must be solved to
find the lowest energy combination of b' and a'=4 for a particular vortex
displacement. The energy landscape chosen features a single pinning site at
b'þa'=4¼ 0:21. At h¼0.025, two local minima exist, one inside the pinning site,
one outside. As field is changed, the positions of these minima shift along the paths
displayed above, allowing the DVPM to describe flexing and rigid displacement in
unpinned and pinned situations. Inset at top right is a 3-D representation of the
potential at h¼0.025, the two local minima and the transition pathway. (b, c) The
schematics depict the field evolution of the deformation in magnetization dis-
tribution using the jMyj ¼ 1 contour of a simulated disk (at top) and the DVPM (at
bottom). (b) shows the no pinning case and (c) a case with strong core pinning.
Note that in both the simulated and DVPM case, deformation (flexing) decreases
when the core is pinned, and increases when it is unpinned. This matches the
computed pathway evolution shown in panel (a). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)

3 All simulations were performed using version 2.56d of the LLG Micromag-
netics software package http://llgmicro.home.mindspring.com/.
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field in 2-D b'-a' space provides a direct visualization of the
problem (Fig. 6). A full 2-D optimization is required.

In b'–a' space, pinning sites appear as linear troughs (Fig. 6). This
permits a simplification of the optimization process by the con-
sideration of pinning site coordinates defined by b'¼ i sin ðθÞþ
j cos ðθÞ and a'¼ i cos ðθÞ� j sin ðθÞ for θ¼ tan �1ð2R=R1Þ. Switch-
ing to i and j coordinates allows independent minimization and
simplifies the problem. The position and existence of local minima
inside and outside of pinning sites evolves with changing applied
field (Fig. 7). Sometimes bistable states exist, and when they
do so, there is inevitably a transition pathway between the two
extant minima that passes over a saddle point. Applying a 2-D

optimization repeatedly while changing the field permits compu
tation of the values of b' and a' for all minima and saddle points.
This in turn permits computation of the quasistatic pinned and
unpinned magnetization and vortex position, while locating the
saddle points separating minima allows computation of the energy
barriers separating bistable states. The critical feature of this
minimization process is that the coordinate a may evolve non-
monotonically with increasing field, matching the qualitative non-
monotonic evolution of the flexing of the magnetization distribu-
tion visible in simulation.

Micromagnetic simulations were used evaluate the pinning
performance of the DVPM and, for comparison, the corrected RVM.

Fig. 7. Plotting the 2-D energy using contours in a' b' space (y and x axes respectively) as a function of reduced field h shows how the vortex core location evolves in both
coordinates. Shown above are panels computed for various fields using the same 1 μm diameter, 40 nm disk with a single pinning site shown in Fig. 6. Transitions occur over
saddle points between bistable states. Asymmetry in the transition path barrier leads to hysteresis in inter-state transitions for up and down field sweeps. Green arrows
denote transitions on the up sweep, red arrows indicate those that occur on the down sweep. The bottom right panel shows the overall path followed by the vortex core in
a' b' during a field sweep. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 8. Them–h (a) and s–h (b) curves for a field sweep up and down are compared against simulation for a 1 μm diameter, 40 nm thick disk with a single pinning site located
at 105 nm with an energy profile estimated from the simulation (inset in (a)). For comparison, the same pinning site is added to the susceptibility corrected, one parameter
RVM. The computed m–h (c) and s–h (d) curves provide much worse agreement including a larger (ð410 nmÞ positional error, and more importantly, a complete absence of
hysteresis on entrance and exit from the pinning site. In the simulation the pinning site is included as a region of suppressed MS (inset in panel (c)) with diameter 40 nm,
where at the center MS¼550 kA/m. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Quasi-static simulations were run as described previously using
the same parameters as were used for ideal disks. Pinning sites are
mimicked using approximately circular regions of depressed
saturation magnetization to modify the energy landscape of the
disk (Fig. 8c inset). This leads to two contributions to pinning
energy, the reduced exchange energy of the core in the low MS

region, as well as reduced demagnetization energy when the core
is centered on the site. From the simulation the depth of the
energetic profile of the pinning site can be approximated by
considering the convolution of a 2-D Gaussian at various offsets
with the profile of the MS variation (Fig. 8a, inset). The Gaussian
effectively approximates the exchange energy density of the core,
as well as the Mz profile, providing an estimate of how the two
energy contributions change as the core shifts relative to the
pinning site. Here a full width half max of 17.2 nm is used for the
Gaussian approximation. To check that the simulations accurately
treated core deformations, supporting simulations were run using
reduced 2.5 nm�2.5 nm and 1.25 nm�1.25 nm simulation grids.
No significant differences were noted.

The performance of the DVPM in describing pinning can be
evaluated by three metrics: the pinning site position error, the
width of the minor hysteresis loops associated with pinning and
depinning, and the combined computed pinned differential mag-
netic and positional susceptibilities. Fig. 9a–d shows results for a
1 μm diameter, 40 nm thick, disk compared to the DVPM and the
3rd order RVM. The DVPM accurately captures both differential
susceptibilities while the RVM fails to capture the positional slope.
Both models feature effective position shifts of the pinning site.
The DVPM agrees best with the simulation for a pinning site
shifted 2.5 nm further from center than the actual simulation

(107.5 nm instead of 105 nm), while a shift greater than 10 nm is
best for the RVM (at 115 nm instead of 105 nm). Most importantly,
however, the computed entrance and exit hysteresis loops agree
closely for the DVPM, but are almost non-existent for the RVM.
The deformation allowed by the DVPM permits the vortex to move
ahead into the site, and linger in the site at a lower energy cost
than the rigid model.

Disk sizes between 500 nm diameter/40 nm thick and 2000 nm
diameter/20 nm thick were simulated with identical MS variation
pinning sites (Fig. 9). The DVPM was found to give good estimates
of hysteresis width and vortex position for all disk sizes when an
optimized value of R1 was used. For disks significantly larger than
1 μm in diameter, at 40 nm thickness, the pinned magnetic
differential susceptibility was found to be underestimated. Fig. 9
shows a 500 nm and 1500 nm diameter result for comparison.

The value of R1 used makes a significant difference in comput-
ing pinning effects in comparison to unpinned behavior. Changing
R1 has a weak influence on the computed m–h and s–h curves,
mitigated by the coupling approach used to modify the shell
demagnetization factor. More importantly, the value R1 dictates
the energetic cost of displacing the core via the exchange-
demagnetization spring. Reducing the proportional value of R1
stiffens the spring. This in turn has a significant effect on pinning
and depinning barriers. In the previous section, errors between the
DVPM and its component models were analyzed to determine the
optimal R1, providing an R1 estimate independent of simulations.
In the case of pinning, however, no model is adequate for
comparison, and consequently it is worthwhile to compare the
computed optimal R1 to values empirically extracted by compar-
ison to well-defined pinning simulations. As in the comparison

Fig. 9. (a) The DVPM m–h result is compared to a simulation of a 500 nm diameter, 40 nm thick disk with MS¼700 kA/m and a single pinning site located 80 nm away from
the center. (b) The computed normalized displacements are compared for the same simulation. For this comparison with R¼250 nm, R1¼80 nm provides the best estimate
of hysteresis loop width. The inset shows a plot of the optimal R1 value found by comparison to simulation as a function of aspect ratio (black points). The blue line is the
optimal R1 value computed by minimizing deviation of the DVPM from the RVM and TVM for initial susceptibility, ds/dh and gyrotropic mode computed for 40 nm thick
disks. (c) Comparison to a simulated 1500 nm diameter, 40 nm thick disk with a single pinning site at 200 nm from center shows that the DVPM begins to underestimate the
magnetization as disk size increases. (d) The computation of the vortex position and hysteresis loop width remains accurate. For R¼750 nm, an R1 value of 375 nmwas used.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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made to the RVM and TVM, in general the value R1¼R/2 provides
reasonable results for a variety of disk sizes. However, for disks
below 1 μm in diameter (for 40 nm thickness), reduced R1 values
provide better pinning performance, particularly in estimated
hysteresis width, reflecting the increasing rigidity of smaller disks.
A comparison between the optimal R1 values computed by error
minimization against the RVM and TVM, and also by comparison
with simulation, is shown in the inset of Fig. 8d. Each optimization
method returns the same trend of decreasing R1/R with the value
of R in close agreement with one another for disks 1 μm in
diameter and below. For large and thin disks, R1¼R/2 provides
better agreement with simulation. This reflects the fact that in low
aspect ratio disks that are very large compared to the exchange
length, the character of flexing in the magnetization distribution
will change to include more complex deformations beyond the
scope of the TVM approximation used.

For experimental or analytic situations where complementary
simulation is not possible, the R1 obtained at the end of the theory
section from error minimization against the RVM and TVM
predictions for ideal disks provides a reasonable estimate. When-
ever it is possible, constructing a simulation of a disk with the
desired radius and thickness with a single, simple pinning site, and
extracting the optimal R1 value is preferable. It should be noted
that for a given disk aspect ratio, once the optimal R1 is computed
from a single simulation, the R1 value is then fixed. Thus far, we
have noted that no dependence of R1 on the size, shape or strength
of the pinning sites incorporated into our simulations. These
include pinning sites ranging from 10 nm to 50 nm in diameter,
with relative MS suppression between 0 and 85%, and featuring

either sharp or gradual edges in the pinning potential. Once the R1
value is fixed, the model permits computation of the effects of
arbitrary pinning potentials or even fitting magnetization curves
to extract information about the pinning potentials.

3.3. Two dimensional pinning potentials

The DVPM provides excellent performance in the description of
ideal disk behavior and pinning for idealized simulations. How-
ever, in application to real samples, inclusion of pinning sites
directly along the usual (no pinning) path followed by the vortex is
limiting. As noted in recent numerical simulation work on pinning
[37], a more realistic case is to consider pinning sites near, but not
centered on, the field-defined path. This can be incorporated into
the 1-D model presented here by computing the 1-D equivalent
potential of the actual 2-D path followed by the vortex. Deviations
orthogonal to the path defined by the applied field have an energy
cost approximated by κΔx2 where the value of κ is given by Eq. (4).
Since the magnetization induced by these deviations is orthogonal
to the applied field, the energy is effectively static and can be
summed with a 2-D distribution of pinning sites to form a trough
guiding the vortex through the 2-D energy landscape. It is then
possible to compute the minimum energy pathway ΔxoðΔrÞ that
the vortex will follow as it is deflected (Fig. 10a). Computing the
total static energy, pinning plus the trough energy, EðΔxoÞ yields
an equivalent 1-D potential as a function of Δr (Fig. 10b). This
potential can then be summed, as the Gaussian pinning sites were
previously, with the potential for a perfect disk including field.

Fig. 10. (a) A 3-D plot shows the pinning site potential combined with the harmonic potential for deviations orthogonal to the path defined by the applied field. The
computed path of minimum energy, ΔxðΔrÞ is plotted as a red thread. (b) At top the 2-D pinning potential is plotted with the computed minimum energy path (red line).
Below, the equivalent 1-D potential is presented. The equivalent potential incorporates contributions from both the pinning potential and harmonic trough. The color
gradient on the potential line matches the color scale in panel (a). (c) The magnetization curve computed from the potential in (b) is compared against a simulated curve
incorporating MS suppressed regions with the same 2-D distribution. The depth of the 2-D potential used in the model calculations is estimated from the simulation.
Agreement is very close, though some deviations show up as the vortex displacement increases and a large energy change is encountered. (d) The simulated ΔxðΔrÞ is
compared to the computed minimum path, showing excellent agreement. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)
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Solving for minima as before allows computation of the evolution
of the magnetization and vortex position in the 2-D potential.

This approach is applied to a simulation that incorporates a 2-D
distribution of 20 nm diameter pinning sites with various values of
suppressed MS near the field-defined path. As before, the pinning
sites are incorporated into the model as Gaussian wells with
depths estimated from the simulation and profiles computed by
convolving a Gaussian with the profile of the MS variation. The
computed 2-D path agrees well with the vortex position extracted
from simulation, as does the computed magnetization (Fig. 5c and
d). Some disagreement is noted as the deflection increases close to
the effective R/2 limit of the model, and the vortex passes over a
large barrier. In this computation, a sparse 2-D distribution of sites
ensures a unique ΔxoðΔrÞ, however, in principle this approach can
be extended to bistable states in Δx by consideration of multiple
vortex tracks. Computation of the energy barriers separating
tracks, however, would require a more complete minimization
over 4-D space with two RVM displacements and two TVM
displacements.

4. Conclusion

The piecewise approach applied to develop the DVPM yields a
highly functional analytic model that makes quantitatively accu-
rate predictions of a wide variety of properties of a vortex in a disk.
Most notably, it provides a powerful description of vortex core
pinning and provides greater physical insight into the behavior of
the vortex during pinning. It is important to note that the pinning
potentials extracted from simulations, and subsequently added to
the model represent the total magnitude of the interaction of the
vortex core with the pinning sites. This implicitly includes the
energetic cost of core deformations, which are not treated directly
by the model. However, since skirt deformations are included
explicitly, the cost of core distortions and core interactions may be
isolated and studied in detail. This highlights the practical purpose
of the model: in order to accurately study the core and its behavior
during pinning, the dominant influence of the skirt must be
explicitly accounted for. The DVPM constitutes a tool capable of
doing this, and consequently elevating empirical magnetization
data to a quantitative probe of vortex core interactions. The model
holds promise as a tool in probing the modification of pinning in
technologically pertinent thin films to better understand effects
such as ion damage. The piecewise approach demonstrated may,
in future, be generalized to other geometries, permitting quanti-
tative computation of device behavior without cumbersome
simulation.
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