3,839 research outputs found

    Hydrogen-atom Attack on Phenol and Toluene is \u3cem\u3eortho\u3c/em\u3e-directed

    Get PDF
    The reaction of H + phenol and H/D + toluene has been studied in a supersonic expansion after electric discharge. The (1 + 1′) resonance-enhanced multiphoton ionization (REMPI) spectra of the reaction products, at m/z = parent + 1, or parent + 2 amu, were measured by scanning the first (resonance) laser. The resulting spectra are highly structured. Ionization energies were measured by scanning the second (ionization) laser, while the first laser was tuned to a specific transition. Theoretical calculations, benchmarked to the well-studied H + benzene → cyclohexadienyl radical reaction, were performed. The spectrum arising from the reaction of H + phenol is attributed solely to the ortho-hydroxy-cyclohexadienyl radical, which was found in two conformers (syn and anti). Similarly, the reaction of H/D + toluene formed solely the ortho isomer. The preference for the ortho isomer at 100–200 K in the molecular beam is attributed to kinetic, not thermodynamic effects, caused by an entrance channel barrier that is ∼5 kJ mol−1 lower for ortho than for other isomers. Based on these results, we predict that the reaction of H + phenol and H + toluene should still favour the ortho isomer under elevated temperature conditions in the early stages of combustion (200–400 °C)

    Young AGN outburst running over older X-ray cavities

    Full text link
    Although the energetic feedback from active galactic nuclei (AGN) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of the AGN heating remain elusive. Here, we study NGC 193 - a nearby lenticular galaxy - based on X-ray (Chandra) and radio (VLA and GMRT) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ~78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and (4-8) times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.Comment: 6 pages, 3 figures, 1 table, accepted for publication in ApJ

    Spitzer and z' Secondary Eclipse Observations of the Highly Irradiated Transiting Brown Dwarf KELT-1b

    Get PDF
    We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, and the atmospheres of irradiated giant planets at high surface gravity. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0.195+/-0.010% at 3.6um and 0.200+/-0.012% at 4.5um. We also find tentative evidence for the secondary eclipse in the z' band with a depth of 0.049+/-0.023%. These measured eclipse depths are most consistent with an atmosphere model in which there is a strong substellar hotspot, implying that heat redistribution in the atmosphere of KELT-1b is low. While models with a more mild hotspot or even with dayside heat redistribution are only marginally disfavored, models with complete heat redistribution are strongly ruled out. The eclipse depths also prefer an atmosphere with no TiO inversion layer, although a model with TiO inversion is permitted in the dayside heat redistribution case, and we consider the possibility of a day-night TiO cold trap in this object. For the first time, we compare the IRAC colors of brown dwarfs and hot Jupiters as a function of effective temperature. Importantly, our measurements reveal that KELT-1b has a [3.6]-[4.5] color of 0.07+/-0.11, identical to that of isolated brown dwarfs of similarly high temperature. In contrast, hot Jupiters generally show redder [3.6]-[4.5] colors of ~0.4, with a very large range from ~0 to ~1. Evidently, despite being more similar to hot Jupiters than to isolated brown dwarfs in terms of external forcing of the atmosphere by stellar insolation, KELT-1b has an atmosphere most like that of other brown dwarfs. This suggests that surface gravity is very important in controlling the atmospheric systems of substellar mass bodies.Comment: 14 pages, 3 tables, 11 figures. Accepted by ApJ. Updated to reflect the accepted versio

    Impact of subdominant modes on the interpretation of gravitational-wave signals from heavy binary black hole systems

    Get PDF
    Over the past year, a handful of new gravitational wave models have been developed to include multiple harmonic modes thereby enabling for the first time fully Bayesian inference studies including higher modes to be performed. Using one recently developed numerical relativity surrogate model, NRHybSur3dq8, we investigate the importance of higher modes on parameter inference of coalescing massive binary black holes. We focus on examples relevant to the current three-detector network of observatories, with a detector-frame mass set to 120 M⊙ and with signal amplitude values that are consistent with plausible candidates for the next few observing runs. We show that for such systems the higher mode content will be important for interpreting coalescing binary black holes, reducing systematic bias, and computing properties of the remnant object. Even for comparable-mass binaries and at low signal amplitude, the omission of higher modes can influence posterior probability distributions. We discuss the impact of our results on source population inference and self-consistency tests of general relativity. Our work can be used to better understand asymmetric binary black hole merger events, such as GW190412. Higher modes are critical for such systems, and their omission usually produces substantial parameter biases

    Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    Get PDF
    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions

    Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars

    Get PDF
    Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex “doublet” type spectral signatures with two bands between 2.2 and 2.3 μm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral “doublet” unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe3+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral “doublet” shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The “doublet” type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these “doublet” type units may mark exciting areas for continued exploration important to astrobiology on Mars

    Dynamic Visual Acuity: a Functionally Relevant Research Tool

    Get PDF
    Coordinated movements between the eyes and head are required to maintain a stable retinal image during head and body motion. The vestibulo-ocular reflex (VOR) plays a significant role in this gaze control system that functions well for most daily activities. However, certain environmental conditions or interruptions in normal VOR function can lead to inadequate ocular compensation, resulting in oscillopsia, or blurred vision. It is therefore possible to use acuity to determine when the environmental conditions, VOR function, or the combination of the two is not conductive for maintaining clear vision. Over several years we have designed and tested several tests of dynamic visual acuity (DVA). Early tests used the difference between standing and walking acuity to assess decrements in the gaze stabilization system after spaceflight. Supporting ground-based studies measured the responses from patients with bilateral vestibular dysfunction and explored the effects of visual target viewing distance and gait cycle events on walking acuity. Results from these studies show that DVA is affected by spaceflight, is degraded in patients with vestibular dysfunction, changes with target distance, and is not consistent across the gait cycle. We have recently expanded our research to include studies in which seated subjects are translated or rotated passively. Preliminary results from this work indicate that gaze stabilization ability may differ between similar active and passive conditions, may change with age, and can be affected by the location of the visual target with respect to the axis of motion. Use of DVA as a diagnostic tool is becoming more popular but the functional nature of the acuity outcome measure also makes it ideal for identifying conditions that could lead to degraded vision. By doing so, steps can be taken to alter the problematic environments to improve the man-machine interface and optimize performance
    corecore