
1. Introduction
Spatial scale is an organizing concept in Earth system science: atmospheric synoptic scales and convective 
scales, and oceanic mesoscales and submesoscales, for example, are ubiquitous touchstones in atmospheric 
and oceanic dynamics. The pervasive idea of an energy spectrum is fundamentally based on the idea of par-
titioning energy (or variance) across a range of spatial scales. Despite this central importance, diagnosing 
dynamics at different spatial scales remains challenging. When analyzing remote-sensing or simulation 
data, scientists instead often rely on time averaging as proxy for separating scales, which is more compu-
tationally convenient than spatial filtering. Temporal filtering is often of interest in its own right, but in 
situations where spatial filtering is called for this trade of spatial for temporal filtering can be justified by 
the fact that dynamics at different spatial scales are frequently also associated with different time scales.

Spatial filtering, long a staple of large eddy simulation (LES; Sagaut, 2006), has recently begun to replace 
time averages and zonal averages in a priori studies of subgrid-scale parameterization for ocean models. A 
canonical model for spatial filtering is given by kernel convolution

( ) ( ) ( )d ,df G f   x x x x x
 (1)

where E G is the convolution kernel, E x  is a dummy integration variable, and dE   denotes the set of all real vec-
tors of dimension E d. Berloff (2018), Bolton and Zanna (2019), Ryzhov et al. (2019), and Haigh et al. (2020) 
all used convolution filters to study subgrid-scale parameterization in the context of quasigeostrophic dy-
namics in a rectangular Cartesian domain. Lu et al. (2016), Aluie et al. (2018), Khani et al. (2019), Stanley, 
Bachman, et al. (2020), and Guillaumin and Zanna (2021) used approximate spatial convolutions on the 
sphere to filter ocean general circulation model output, and Aluie (2019) showed how to correctly define 
convolution on the sphere in such a way that the filter commutes with spatial derivatives. A “top hat” or 
“boxcar” kernel (i.e., an indicator function over a circle or a square, respectively) is used in all these studies, 
except for Bolton and Zanna (2019), Stanley, Bachman, et al.  (2020), and Guillaumin and Zanna (2021) 
who used Gaussian kernels. Spatial convolution is not the only way to define or implement spatial filters. 
For example, Nadiga (2008) and Grooms et al. (2013) used an elliptic inversion to define spatial filters for 
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quasigeostrophic model output, and Grooms and Kleiber (2019) used Fourier-based filtering methods for 
primitive equation model output, all in rectangular Cartesian domains. Fourier methods with windowing 
can be used for filtering over local patches (e.g., Arbic et al., 2013), though this can lead to artifacts, as 
shown by Aluie et al. (2018).

We make a semantic distinction between spatial filtering and coarse-graining. In our use of the terms, 
coarse-graining is an operation that produces output at a lower resolution (i.e., smaller number of grid 
points) than the input, whereas spatial filtering produces output at the same resolution as the input. (Note 
that this terminology is not uniformly adopted in the literature; cf. Aluie et al. [2018)].) Berloff (2005), Porta 
Mana and Zanna (2014), Williams et al. (2016), Stanley, Grooms, et al. (2020), and Zanna and Bolton (2020) 
are all examples where coarse-graining was used in the context of ocean model subgrid-scale parameteri-
zation. The term “averaging” is sometimes used instead of filtering. They are essentially synonymous when 
the filter kernel E G is non-negative, but a filter whose kernel has negative values cannot be described as an 
average, so we opt to use the more general term. A low-pass filter can be described as a smoother, which is 
the focus here, but the methods described here can be straightforwardly adapted to band-pass or high-pass 
filters.

This study introduces a new way of designing and implementing spatial filters that rely only on a discrete 
Laplacian operator for the data. Because it relies on the discrete Laplacian to smooth a field through an 
iterative process reminiscent of diffusion, we refer to the new method as diffusion-based filters. The study 
is structured as follows. Section  2 describes the new filters along with their properties. Examples using 
model data and observations are provided in Section 3 to illustrate the various filter properties described in 
Section 2. Conclusions are offered in Section 4. Appendix A provides some details of the filter specification, 
and Appendix B discusses the commutation of the filter with derivatives.

2. Spatial Filtering of Gridded Data
2.1. Review

Spatial filtering of gridded data is a well-developed field, both for general applications and in the context 
of geophysical data. The focus here is on filtering in the context of fluid models, especially atmosphere and 
ocean models. To place our new method into context, we review existing filtering techniques, and distin-
guish between implicit and explicit filters.

Shapiro (1970) introduced a class of filters, widely used to improve the performance of early finite-differ-
ence weather models by removing energy near the grid-scale and thereby preventing accumulation leading 
to blowup. Shapiro filters are essentially discrete spatial convolution filters optimized to remove the small-
est scales that can be represented on a logically rectangular grid, while leaving the other scales as close to 
unchanged as possible. Sagaut and Grohens (1999) reviewed some of the more recent approaches to convo-
lution-based filtering for large-eddy simulation. Sadek and Aluie (2018) developed two discrete convolution 
kernels for the purpose of accurately extracting the energy spectrum using convolution filters rather than 
Fourier methods.

Germano (1986) introduced an implicit differential filter of the form
2(1 ) ,L f f   (2)

where E f  is the filtered field, E L is the filter length scale, and E  is the Laplacian. It is “implicit” because ap-
plying the filter to data involves solving a system of equations; the convolution filters of Shapiro (1970) and 
Sagaut and Grohens (1999) are called “explicit” in contrast. Germano's implicit filter appears in the Leray-E  
and Lagrangian-averaged Navier-Stokes-E  models (Chen et al., 1998). Implicit differential filters were used 
by Nadiga (2008) and Grooms et al. (2013) in the context of subgrid-scale parameterization in quasigeo-
strophic ocean models, and a similar fractional elliptic equation underlies the approach to spatial filtering 
of scattered data recently developed by Robinson and Grooms (2020). Raymond (1988) and Raymond and 
Garder (1991) developed implicit filters for meteorological applications using higher-order differential op-
erators. Guedot et al. (2015) developed higher-order implicit differential filters on unstructured meshes for 
engineering applications. Note that the term “high order” here refers to the differential operator, though it 
has been used elsewhere with different meanings (Sagaut & Grohens, 1999; Sadek & Aluie, 2018).
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The new approach developed here results in high order explicit differential filters, meaning that they use a 
discrete Laplacian, but that they do not require solving a system of equations.

2.2. Spatial Filtering Basics

Most intuition about spatial filtering and spatial scales is built on the foundation of kernel convolution and 
Fourier analysis, in the context of Equation 1. The well-known convolution theorem (e.g., Hunter & Nach-
tergaele, 2001, Theorem 11.35) states that the Fourier transform of E f  is proportional to ˆ ˆE Gf , where ̂ denotes 
the Fourier transform and the proportionality constant depends on the dimension E d and on the normaliza-
tion convention chosen in the definition of the Fourier transform.

Fourier analysis enables us to understand the effect of spatial convolution filtering in terms of length scales. 
We consider the function E f  to be a sum of many Fourier modes, each of which has a distinct spatial scale. 
The Fourier transform of the kernel, ˆE G, then describes how each Fourier mode is modified by the spatial 
filtering operation. Filter kernels are usually symmetric about the origin, which makes ˆE G real-valued, so 
that spatial filtering only changes the amplitude of the Fourier modes and not their phase. If 1ˆ ( )E G k   for a 
particular Fourier mode then the corresponding length scale is left unchanged in E f , whereas if 0ˆ ( )E G k   for 
a particular Fourier mode then the corresponding length scale is removed from E f . By modifying the ampli-
tudes of the Fourier modes, spatial filtering controls the scale content of E f .

One of the simplest kernels is the so-called boxcar function, defined in one spatial dimension as

G x
L x L

x L
L

( )
/ | | /

| | /











1 2

0 2 (3)

Convolution against this kernel represents averaging all the points in the neighborhood with the same 
weight, and the parameter E L defines the size of the neighborhood. (In higher dimensions the boxcar filter 
is nonzero over a square region, while a “top-hat” filter is nonzero over a circular or spherical region.) The 
Fourier transform of the boxcar filter of width E L is

cˆ ( ) sin
2L
kLG k


 
  

 
 (4)

where sinc( ) sin( )/( )x x x    and E k is the wavenumber. This function decays only as 1/k  at large E k, so it does 
not correspond to a sharp separation between length scales. Conversely, a “spectral truncation” filter has a 
kernel whose Fourier transform is a boxcar, and the kernel itself is a sinc function. The boxcar and spectral 
truncation filters illustrate the concept that a short-range kernel does not separate scales well, and a filter 
that makes a sharp separation between scales requires a very long-range kernel. Figure 1 shows the boxcar 
and sinc convolution kernels, to illustrate that the more scale-selective sinc kernel has a much longer range. 
In practice, there is a tradeoff between choosing a kernel that makes as clean a scale separation as possible 
and choosing a kernel whose range is short enough to apply efficiently, analogous to the uncertainty prin-
ciple in quantum physics.

It is usually desirable for the filter to preserve the integral, and to commute with derivatives, that is,
( )d ( )d ,d df f  x x x x

  (5)

.
i i

f f
x x
 


 

 (6)

Any convolution filter commutes with derivatives, and preservation of the integral is easily ensured by the 
condition

( )d 1.d G x x
 (7)

In the presence of boundaries the convolution 1 no longer works, since ( )E f x  is not defined on dE  . One op-
tion, used by Aluie et al. (2018), is to simply extend ( ) 0E f x  outside the domain boundaries. For velocity, 
the values on land can be set to zero, though for tracers it is less clear how to set values on land. The more 
common option is to vary the kernel near the boundaries so that the filter formula changes to



Journal of Advances in Modeling Earth Systems

GROOMS ET AL.

10.1029/2021MS002552

4 of 24

( ) ( , ) ( )d ,f G f
  x x x x x (8)

where dE     is the spatial domain and E x  is a dummy integration variable. Unlike the convolution filter 
(1) the kernel E G is now a function of two arguments, to emphasize that the shape of the kernel can change 
over the spatial domain. This kind of spatial filter (8) no longer commutes with spatial derivatives, though 
it still preserves the integral as long as the kernel is appropriately normalized.

The background intuition for kernel-based spatial filters in this subsection is developed entirely for func-
tions on Euclidean spaces. The definition of convolution-based spatial filters is considerably more compli-
cated on a sphere; see Aluie (2019) for details.

2.3. Diffusion-Based Smoothers

2.3.1. Discrete Integral and Laplacian

To generalize the foregoing ideas to more complicated domains and grid geometries we begin with a tran-
sition to the discrete representation. The field to be filtered is no longer a continuous function, but a vector 

E f; for example, if we wish to filter temperature on a grid of E n points, then we think of the values of temper-
ature on the grid as a vector in nE  . To lay a foundation for the analysis we need two ingredients; the first is 
a discrete integral

( )d ,i i
i

f w f  x x (9)

where E  denotes the spatial domain and iE w  are positive weights. Cartesian geometry is assumed for ease of 
presentation, but the discrete integral could easily approximate an integral over the sphere or some other 
smooth manifold without changing the analysis. For a typical finite-volume model the weight iE w  will simply 
be the area (or volume, if the integral is over three spatial dimensions) of the thE i  grid cell. If the weights iE w  
are all positive then we can define a discrete inner product

, .i i i
i

w f g   f g (10)

The area integral can be expressed in terms of the inner product as ,E  1 f , where E 1 is a vector whose entries 
are all 1.

The second ingredient is a discrete Laplacian, that is, some operation on E f that produces an approxima-
tion of E f  on the grid. The development in this section does not explicitly require Cartesian or spherical 

Figure 1. The boxcar function of width 1 and sinc( )E x .
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geometry; it only requires a discretization of a Laplacian operator that is appropriate to the geometry of 
the data. We write this operation in matrix form as E Lf, though it is certainly not necessary to actually 
construct the matrix E L. We assume that the discrete Laplacian is negative semi-definite, and self-adjoint 
with respect to the discrete inner product, that is, for any E f and E g

, 0, and , , .       f Lf f Lg Lf g (11)

This is automatically guaranteed for finite-volume discretizations of the Laplacian with no-flux boundary 
conditions.

2.3.2. Connecting the Discrete Laplacian to Spatial Scales

Since the discrete Laplacian is self-adjoint and negative semi-definite, the eigenvalues of E L are all real and 
non-positive, and there is an eigenvector basis 1, , nE q q  of nE   that is orthonormal with respect to the discrete 
inner product. This is directly analogous to the Fourier analysis of the foregoing section: Fourier modes on 

dE   are eigenfunctions of the Laplacian on dE  . In fact, with an equispaced grid and periodic boundaries the 
eigenvectors iE q  are exactly the discrete Fourier modes. In both the Fourier version and the discrete version 
the eigenvalues can be interpreted as describing the spatial scale of the corresponding eigenfunction:

i 2 i 2, .i i ie k e k     k x k x Lq q (12)

On the left in the above expression k  kǁ ǁ represents the familiar Fourier wavenumber corresponding to 
a wavelength of 2 /k, while on the right the eigenvalue 2

iE k  has been written with similar notation to 
emphasize the similarity. Precisely because E L is a discretization of the Laplacian, the length 2 /k

i
 should 

roughly correspond to the length scale of the eigenvector iE q . We assume that the eigenvalues are ordered  
such that 1 2 nE k k k    .

Continuing the analogy with the previous section, it is possible to write the vector to be filtered as a sum 
over eigenfunctions of the discrete Laplacian:

1
.ˆn

i i
i

f


 f q (13)

We next show that we can filter E f by applying a function ( )E p L  to it. From Equation 13, we see that this 
results in

2

1 1
( ) ( ) ( ) ,ˆ ˆ ˆn n

i i i i i i
i i

p f p k f G k
 

    L f q q (14)

where the notation 2 )ˆ ( ) (E G k p k  has been deliberately used to emphasize the connection to the Fourier 
convolution theorem recalled in the previous section: if the expansion coefficients of E f are îE f , then the ex-
pansion coefficients of ( )E p L f are )ˆ ˆ( i iE G k f . (The notation E p is used for both the matrix and scalar versions 
of the function; a familiar example might be ( ) tE p t e  LL  and 0(0) 1E p e  .) If one defined the function 

E p in such a way that

*

*

1
( ) ,

0
ˆ k k

G k
k k

   
 (15)

then multiplying E f by ( )E p L  would correspond to projecting E f onto large-scale modes defined by *iE k k . 
This would be analogous to a spectral truncation filter. Since the discrete filter is a function of a discrete Laplacian, 
it is natural to suspect that the filter should commute with derivatives; this question is addressed in Appendix B.

The assumption that the eigenvalue 2
iE k  corresponds to a physical length scale 2 /k

i
 for the eigenvector 

is crucial. It is not typically possible in realistic applications to derive the eigenvalues and eigenvectors in 
closed form to verify this assumption, nor is it practical to compute them numerically. The assumption is 
nevertheless expected to hold except possibly in non-smooth geometries.
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2.3.3. Polynomial Approximation of the Target Filter

For the large data sets produced by Earth system models computing the eigenvalues and eigenvectors of E L 
is prohibitively expensive, and even solving linear systems involving E L can be expensive. By contrast, simply 
applying E L is usually inexpensive. In practice this means that it is inexpensive to compute ( )E p L f when E p 
is a polynomial. (The implicit differential filters of Germano (1986) and Guedot et al. (2015) correspond to 
letting 1/ p be a polynomial.)

We propose to define our new filters as ( )E p f L f, where E p is a polynomial

0 1( ) ( ) ( ) .N
Np a a a      L I L L (16)

The polynomial coefficients lE a  will be chosen as described below to obtain the desired filter shape, and E I 
is the identity matrix. To show that such a filter preserves the integral, note that ( )E p L  is self-adjoint with 
respect to the discrete inner product, and

0, , ( ) ( ) , , ,p p a            1 f 1 L f L 1 f 1 f (17)

where we have used the fact that E L1 0 for any consistent discretization of the Laplacian with no-flux 
boundary conditions. The condition 0 (0) 1E a p   thus guarantees that the spatial filter will preserve the 
integral. It also ensures that the filter will leave large scales approximately unchanged; in order to remove 
small scales E p should decay toward zero as E k increases.

We can choose a specific shape for E p by means of standard polynomial approximation of a “target” filter ˆ
tE G . 

For example, note that the Fourier transform of a Gaussian convolution kernel with standard deviation E L is

2 2
( ) exp .ˆ

2
L kG k

    
  

 (18)

To construct a filter that acts like a convolution-based spatial filter with a Gaussian kernel of standard 
deviation E L, one might choose a target filter of the form ( ) ( )ˆ ˆ

tE G k G k . It is worth emphasizing that the 
connection to convolution is only heuristic; near boundaries or in non-Euclidean geometry the target filter 
is not exactly the same as a convolution-based spatial filter. In particular, the use of a Gaussian target filter 
will not produce exactly the same result as convolution with a Gaussian kernel. The precise interpretation 
of (ˆ )tE G k  is based on Equation 14: the expansion coefficient îE f  is multiplied by )ˆ (t iE G k .

The goal would then be to find a polynomial E p such that 2( ( )ˆ) tE p k G k . In general this is not possible with 
an explicit filter because polynomials grow without bound as E k  ; thankfully it is only necessary for the 
approximation to hold over the range of scales represented on the grid, specifically for 0 nE k k   where 2

nE k  
is the most-negative eigenvalue of E L. If nE k  is not known, some reasonable proxy can be used to define the 
range of scales over which E p should act like a spatial filter. For example, on a quadrilateral grid one might 
use 0  k d /d minE x  where d minE x  is the length of the smallest grid cell edge and E d is the spatial dimension 
of the grid.

In Appendix A, we present a least-squares approach for finding a polynomial E p such that 2( )E p k  approxi-
mates (ˆ )tE G k . The left column of Figure 2 shows three examples of target filters, along with their approxi-
mations 2( )E p k  using polynomials of degree 3,5,E N   and 21. The top row shows the boxcar target shown in 
Equation 4 with length scale 8E L   (nondimensional), and the middle row shows the Gaussian target that 
corresponds to a Gaussian kernel with standard deviation 4 3/ (nondimensional). The bottom row shows 
a target that we here label “taper.”

The taper target is developed as an example of a filter that is more scale-selective than the Gaussian; it is 
a smooth approximation of a spectral cutoff filter. The taper target is a piecewise polynomial with a con-
tinuous first derivative. It is ( ) 0ˆ

tE G k   for E k above some cutoff k L
c
 2 / , with 8E L   (nondimensional) in 

Figure 2. For 0  k k X
c
/  it takes the value ( ) 1ˆ

tE G k   where E X controls the width of the transition region; 
E X   in Figure 2. For wavenumbers in the transition region k X k k

c c
/    the taper target is a cubic poly-

nomial. As the width of the transition region goes to zero ( 1E X  ) the taper target approaches the spectral 
truncation filter, which is a step function at wavenumber cE k . The left column of Figure 2 shows that the 
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number of steps E N required to achieve an accurate approximation of the target filter depends on the shape 
of the target filter, with more scale-selective targets like the taper requiring more steps E N.

2.3.4. Definition of Filter Scale

We provide a single convention linking the “filter scale” for the boxcar, Gaussian, and taper targets as fol-
lows. The filter scale for a boxcar kernel is simply the width of the kernel E L (not the half-width). Per Equa-
tion 4, the boxcar filter exactly zeros out the wavenumber k L 2 / . Since the taper filter also zeros out 
wavenumber 2 / L, it is natural to let E L define the ‘filter scale’ for both the boxcar and taper filters. The filter 
scale for a Gaussian is chosen so that the standard deviation of the Gaussian and boxcar kernels match for a 
given filter scale (cf. Sagaut & Grohens, 1999). This is achieved by defining the “filter scale” E L for a Gaussian 
to be 12E  times the standard deviation of the Gaussian kernel, that is, to extract the standard deviation E   
from the filter scale E L use   L /( )2 3 . This convention is developed based on convolution over a Euclide-
an space, but once developed it simply serves to link the definition of the filter scale E L across target filters, 
which can be used in non-Euclidean geometry, for example, on the sphere.

2.3.5. Filter Algorithm

Once the approximating polynomial has been found, the filtered field ( )E p L f can be efficiently computed 
using an iterative algorithm based on the polynomial roots. In general, any polynomial with real coefficients 
has roots that are either real, or come in complex-conjugate pairs. We can thus write

2 2 2 2
1 2 2( ) ( ) ( )( 2 { } | | ) ( 2 { } | | ),N M M M N Np s a s s s s s sR s s s sR s s         (19)

Figure 2. Left: Target filters (ˆ )tE G k  and their approximations 2( )E p k . Right: The equivalent kernel weights in one dimension on an equispaced grid of size 1. 
Top Row: A boxcar filter of width 8; Middle Row: A Gaussian filter with standard deviation 4 3/ ; Bottom Row: The taper filter. All length scales in this figure 
are nondimensional. There is no blue line in the lower right panel because the taper filter is defined directly in terms of its target (ˆ )tE G k , rather than via its 
convolution kernel, as for the boxcar and Gaussian filters.
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where E M is the number of real roots, the roots are 1, , NE s s , and {}E R   and {}E I   denote the real and 
imaginary parts of a complex number, respectively. The quadratic terms can also be written  

| | ( { }) ( { })s s s R s I s
k M M

    
2

2
2

2
2. The condition (0) 1E p   implies

p s
s

s

s

s

sR s s

sM

M

M

( )
{ }

| |
 








 









 

 

















1 1 1
2

1

2
2

2
2

  1
2

2

2

 













sR s s

s

N

N

{ }

| |
. (20)

Based on this representation, the filtered field ( )E p f L f can be computed in M N M ( )/2 stages as 
follows. First the real roots are dealt with via

0 f f (21a)

1 1
1 , 1,…, .k k k
k

k M
s   f f Lf (21b)

These stages are called Laplacian stages. Next the complex roots are dealt with via

f f Lf L f
k k

k

k

k

k

k

R s

s s

k M M N 
 

     2 2 2 2

2
2

2 1
2 4

| | | |
, , , ,& (22a)

.Nf f (22b)

These stages are called biharmonic stages because of the need to apply the discrete biharmonic operator 2E L .

In the absence of roundoff errors the Laplacian and biharmonic stages can be applied in any order, and once 
they are both complete E f  contains the filtered field (though at any point in the middle of the iterations E f  
has no particular meaning). However, in practice, the order can have an impact on numerical stability. This 
issue is discussed in Section 2.4.

2.3.6. Scalar, Vector, and Tensor Laplacians on Curved Surfaces

The development thus far is based on a discrete approximation of a scalar Laplacian, or of the Laplace-Bel-
trami operator on a curved surface like the sphere. In Euclidean space, the Laplacian of a vector or a tensor 
is obtained by applying the scalar Laplacian to the elements of the vector or tensor. This is no longer the 
case on a curved surface like the sphere, as can be seen, for example, in the fact that the discretizations of 
viscosity and diffusion are different on the sphere. The algorithm described in the foregoing section can be 
directly extended to filtering vectors or tensors on curved surfaces by simply taking E L to be a discretization 
of the appropriate continuous operator, for example, the vector or tensor Laplacian on a sphere. In this 
case E f should be understood to include all components of the vector or tensor being filtered. For example, 
the grid values of zonal velocity could be arranged as the first half of E f while the grid values of meridional 
velocity could be arranged as the second half of E f.

2.3.7. Computational Cost

Typically the computational cost (in terms of floating point operations) of applying the discrete Laplacian E L 
is ( )E n  where E n is the number of grid points. The total number of discrete applications of the Laplacian is E N, 
so the cost to apply the filter is ( )E Nn . The number of stages E N depends on the shape of the target filter and 
the ratio of the filter scale to the grid scale, called the filter factor E F. For both the Gaussian and taper filters 
the number of stages needed to achieve a fixed accuracy scales (empirically) linearly with E F, so the overall 
cost of applying the filter is ( )E Fn .

This is directly comparable to a convolution-type filter implemented using quadrature. In a convolution-type 
filter, one is required to compute a quadrature at each of the E n grid points. The number of nonzero elements 
in the kernel, and thus the number of floating-point operations required to compute the quadrature, is line-
arly related to the ratio of the grid-scale to the width of the kernel, that is, the filter factor. The cost of apply-
ing a convolution-type filter is thus also ( )E Fn : at each of E n grid points one must compute a quadrature that 
costs ( )E F  floating point operations. Naturally, the performance in practice depends heavily on the details 
of the implementation, the coding language, the machine architecture, and so on.
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2.4. Floating Point Roundoff Errors

Recall that per Equation 13, we can formally expand the field to be filtered as a sum of eigenvectors of the 
discrete Laplacian, and that per Equation 14, the effect of the filter is simply to modify the coefficients in 
this expansion. The same idea applies to a single stage in the iterative application of the filter. A single Lap-
lacian stage multiplies the expansion coefficients by

2
1 .i

k

k
s

 (23)

Any modes i  such that 2 2i kE k s  will have their coefficients îE f  amplified at this stage, and smaller scales will 
experience greater amplification. (The sign of the coefficients will also be changed; the real roots kE s  are gen-
erally positive.) In contrast, when | / |1 1

2 k s
n k

 none of the modes will experience amplification and the 
smallest scales will be damped.

A single biharmonic stage multiplies the expansion coefficients by

22
1 .i

k

k
s

 (24)

As a function of 2
iE k  this is a positive parabola that equals 1 at 0iE k  . When the real part of kE s  is negative all 

modes are amplified with increasing amplification at small scales. When the real part of kE s  is positive, modes 
with 2 2 { }i kE k s   will be amplified, with increasing amplification at small scales.

Consider a filter that attempts to remove a wide range of scales, that is, one where the filter scale is much 
larger than the grid-scale. To achieve this, the polynomial approximation algorithm from Appendix A se-
lects a range of roots kE s , with some of the roots corresponding to scales much larger than the grid scale 

k nE s k . The stages with k nE s k  amplify the small scales while damping the large scales. Taken togeth-
er, the stages end up producing smoothing over a wide range of scales, but if the iteration (21b) is stopped 
partway, there can be ranges of scales that are amplified rather than damped. In particular, if there are 
several stages in succession that cause amplification at the small scales (near the grid-scale), it can lead to 
extreme amplification at small scales, including extreme amplification of any roundoff errors present in the 
small scales. This combination of many stages that amplify small scales, together with a large number of 
stages for roundoff errors to accumulate, can lead to inaccurate results or even blowup of the filtered field. 
To avoid this, we recommend choosing a specific order for the roots kE s , such that stages that amplify small 
scales are always followed by stages that damp small scales.

To illustrate these ideas, we set up a simple toy problem with a one-dimensional, periodic, equispaced grid 
of 256 points in a nondimensional domain of size 2E  , and a spectral discrete Laplacian. The eigenvectors of 
the discrete Laplacian are the discrete Fourier modes with wavenumbers 127, ,128E k    , and the eigenval-
ues are exactly 2E k . The filter polynomial E p is constructed by directly specifying the roots kE s , rather than by 
approximating some target filter ˆ

tE G . The roots kE s  are the integers from 43 to 170, squared, that is, there are 
128E N   stages with roots on both sides of the cutoff scale 128nE k  . This filter should thus exactly zero out 

all discrete wavenumbers with | |k  43, while smoothly damping wavenumbers with | |k  43. The field to be 
filtered is constructed to have discrete Fourier transform iˆ k

kE f e   where kE   are independent and uniformly 
distributed on [0,2 )E  . This initial condition is chosen so that the discrete Fourier transform of the final fil-
tered field should, in the absence of roundoff errors, have absolute value equal to | ( )|p k

2 .

Figure 3 shows the amplitude of the Fourier modes of the field as it progresses through the stages of the 
filter. The left panel shows the result for a filter where kE s  are ordered from least to greatest, such that the first 
stages amplify the small scales while the last stages damp them. The small scales grow to amplitudes on the 
order of 2110E  within the first 50 stages. The subsequent stages manage to damp these small scales back out, 
but the solution is so corrupted by the effect of roundoff errors that the final solution is completely inaccu-
rate: the large scales have amplitudes on the order of 410E .

The center panel of Figure 3 shows the effect of arranging kE s  in decreasing order, such that the last stages 
amplify the small scales while the first stages damp them. The filter behaves quite well until the final few 
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stages, where the small scales are amplified to the order of 410E . Evidently, the initial damping stages intro-
duce small amplitude roundoff errors into the small scales which are then amplified in the final stages.

The right panel of Figure 3 shows the effect of arranging the kE s  so that the small scales are alternately am-
plified and then damped. In the early stages of the filter, there is a range of intermediate scales that begins 
to amplify, though they maintain modest amplitudes less than 100. These intermediate scales are eventually 
damped back out in the later stages, leading to a well-behaved and accurate solution.

The stages in the right panel of Figure 3 are arranged in the following simple way. We first compute the 
impact of each stage on the smallest scale, given by setting maxiE k k  in the absolute value of expression (23) 
and in expression (24). These values are then ordered, and the stage order is set by selecting the smallest 
value (strongest damping) first, followed by the largest value (strongest amplification), followed by the 
next-smallest value, and so on.

2.4.1. Connection to Diffusion

The form of Equation 21b is reminiscent of time integration of the diffusion equation via an explicit Eul-
er discretization with variable time steps, and in some sense the method can be thought of as smoothing 
through diffusion. To be explicit, if we assume a diffusivity of 

*
 then the time step sizes are dt s

k k
 1/( )

*
 . 

(The *subscriptE  serves to distinguish this 
*
, which is dimensional, from the E   introduced in Section 2.6, 

which is nondimensional). There is no analogy for the biharmonic stages, or for negative kE s , so the analogy 
only holds when all the kE s  are real and positive. The usual stability analysis for time integration of the dif-
fusion equation corresponds to the case where all the time steps are of equal size, that is, all the kE s  must be 
real, positive, and equal. In this case the Courant-Friedrichs-Lewy (CFL) condition corresponds to requiring 
that a single step does not amplify any component of the solution; if this condition is violated, then as the 
number of steps proceeds to infinity the solution will also grow to infinity, even in exact arithmetic. Per the 
discussion above, requiring no growth of any part of the solution in a single step corresponds to the condi-
tion | / |1 1

2 k s
n k

. Written in terms of the time step this CFL condition takes the form dt k
k n
 1

2
/( )

*
 . In-

serting the approximation k d
n
  /d minE x  yields a more familiar form for the CFL condition for diffusion: 

kE h dx dmin
2 2

/( )
*

   (recall that E d is the dimension of the physical domain).

Figure 3. Amplitude of the Fourier coefficients of E f  as it proceeds through the filter stages. In each panel, the abscissa is filter stage while the ordinate is the 
wavenumber. In the left panel, kE s  are arranged in increasing order. In the center panel, the kE s  are decreasing. In the right panel, the damping and amplifying 
stages alternate.
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The instability associated with violating the CFL condition for diffusion is not the same as the one described 
above, nor is it relevant for analyzing the stability of our filtering algorithm. That they are not the same can 
be seen from the fact that the instability analyzed above is entirely a result of roundoff errors, whereas the 
instability associated with violating a CFL condition occurs even in exact arithmetic. The CFL condition is 
not relevant for our algorithm because our algorithm is not solving the heat equation except in special cases, 
and even in those cases the size of the time step varies and the number of time steps E N is finite.

2.5. Impact of the Order of Accuracy of the Discrete Laplacian

This section gives a simple example to show that higher-order discretizations of the Laplacian should be 
better able to sharply distinguish between scales near the grid-scale. Throughout this section, “small” length 
scales refer to scales near the grid-scale. The fundamental idea of Section 2.3 is that the eigenvalues of 
the discrete Laplacian correspond to the spatial length scale of the eigenvector in the same way that this 
correspondence works for the continuous Fourier problem, that is, if 2

iE k  is an eigenvalue of the discrete 
Laplacian then the length scale of the corresponding eigenvector iE q  is assumed to be 2 /k

i
. This connection 

between eigenvalues and length scales can be inaccurate at small length scales.

For example, consider the following two discrete Laplacians on an infinite or periodic one-dimensional 
equispaced grid with grid spacing 1 (nondimensional)

 2 1 12j j jj
f f f   L f (25)

 4 2 1 1 2
1 4 5 4 1 .

12 3 2 3 12j j j j jj
f f f f f        L f (26)

For both of these Laplacians the discrete Fourier modes

  ikj
k j

eq (27)

are eigenvectors, where 0E k    is the discrete wavenumber, 2E L  is the second order, and 4E L  is the fourth 
order. (Note that notation has been changed from iE q  in Section 2.3 to kE q  here, so that E k is the discrete wave-
number rather than i.) For a spectral discretization the eigenvalues would be 2E k , but the eigenvalues for the 
second and fourth order Laplacians are

2
2 4sin

2k k
k 

   
 

L q q (28)

2
4

2 (7 cos( )) sin .
3 2k k

kk
 

    
 

L q q (29)

The fact that these are not equal to 2E k  is tantamount to saying that the filter will incorrectly identify the 
length scales of the eigenfunctions. Figure 4 shows the ratio of the discrete eigenvalues (28) and (29) to the 
correct value 2E k . In both cases, the wavenumber implied by the eigenvalue is smaller than the true wave-
number E k, meaning that these Laplacians treat small scales as if they were larger-scale than they really are. 
Both Laplacians have accurate eigenvalues at large scales, but the fourth-order Laplacian's eigenvalues are 
more accurate at small scales. A filter that uses the fourth-order Laplacian will thus be more accurate when 
the filter is attempting to separate scales near the limit of resolution. If one is attempting, for example, to 
get an accurate estimate of the energy spectrum at scales near the grid-scale using the diffusion-based filter 
of Section 2.3 in combination with the method of Sadek and Aluie (2018) for estimating the spectrum, then 
it would be important to use a high-order discretization of the Laplacian. On the other hand, if the filter is 
attempting to remove the entire range of small scales where the second-order Laplacian is inaccurate, then 
the second-order Laplacian will work as well as higher-order Laplacians.

A user might attempt to filter two different data sets, each with a different resolution, to the same filter scale. 
The results will be similar provided that the filter scale is well-resolved in both data sets. If the filter scale 
is close to the grid-scale of one of the data sets and the discrete Laplacian uses a low-order approximation, 
then the results could differ.
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2.6. Spatially Varying Filter Properties

The filters developed in Section 2.3 are based on the isotropic Laplacian, and are therefore isotropic in the 
sense that they provide an equal amount of smoothing in every direction. The filter coefficients are the same 
over the whole domain, so the degree of smoothing is also constant over the domain. This can be general-
ized to anisotropic and spatially varying filters by letting E L be a discretization of ( )E   K x  where ( )E K x  is a 
symmetric and positive definite tensor that varies in space (cf. Báez Vidal et al., 2016). (In this context E K is 
nondimensional, since the dimensions are carried by the polynomial roots iE s .)

Consider first the isotropic case E K I with constant E  , and assume that the filter polynomial 2( )E p k  has 
been designed as described in Section 2.3 under the assumption 1E   . If the filter polynomial is used with 
constant 1E    then the filter polynomial 2( )E p k  is replaced by 2( )E p k . This is tantamount to rescaling the 
filter length scale by E  . For example, if the original filter with 1E    had a characteristic length scale of E L 
then the filter using 1E    has a characteristic length scale of E L .

Next consider the case of an isotropic Laplacian with spatially varying E  , and assume that E   varies slowly 
over the domain. The filter polynomial E p is designed to have length scale E L if 1E   . In regions where 1E    
the filter will have a longer length scale E L , while in regions where 1E    the filter will have a smaller 
length scale. (If E   varies on length scales smaller than the filter scale then the behavior of the filter is hard 
to predict, so this situation should be avoided.)

Finally, consider the case of an anisotropic Laplacian with symmetric and positive definite E K that varies 
over the domain. At each point in the domain E K has two orthogonal eigenvectors corresponding to different 
directions, and the eigenvalues indicate the strength of smoothing in each direction. One natural applica-
tion of the anisotropic Laplacian is to apply a filter whose length scale is tied to the local grid-scale, which 
is especially relevant for Earth system models whose grid cell sizes vary in space. This can be achieved by 
aligning the eigenvectors of E K with the local orthogonal grid directions, and letting the respective eigenval-
ues determine the amount of filtering in each direction.

A major caveat to the above discussion is that values of 1E    can lead to unexpected behavior. Consider, for 
example, the filter polynomial

2 2 2 2( ) (1 0.7 )(1 0.8 ) (1 1.2 ),p k k k k       (30)

where the scales that can be represented on the grid are associated with wavenumbers 0 1E k   and the 
standard case uses 1E   . The blue line in Figure 5 shows that 2( )E p k  only acts as a smoother over the range 

Figure 4. The ratio of the eigenvalues 2
iE k  of the discrete Laplacians to the true value 2E k . The second-order Laplacian 

is shown in blue and the fourth-order Laplacian is shown in green. E k   corresponds to the Nyquist wavenumber, that 
is, the wavenumber associated with the grid-scale.
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of scales associated with 0 1E k  ; at larger E k that are not represented on the grid the filter will significantly 
amplify these scales. Using 1E    has the effect of bringing this undesirable filter behavior into the range 
of scales represented on the grid, as can be seen in the green line corresponding to 2E    in Figure 5. In 
contrast, using 1E    has no such problems (blue and red in Figure 5). It is thus desirable to specify 1E    
whenever possible.

Consider, for example, a one-dimensional non-uniform grid with maximum grid spacing maxE h , minimum 
grid spacing minE h , and local grid spacing E h. To apply a filter that smooths locally to a scale E m times larger than 
the local grid, one could choose the filter scale to be minE L mh  and then set   ( / )h hmin

2. Locally the filter 
scale is rescaled to  L h h mh mh ( / )( )min min  as desired, but at the same time 1E    which will lead to 
undesirable behavior at the small scales. Instead, one can achieve the same effect by setting the filter scale 
to maxE L mh , and then setting   ( / )h hmax

2. The local filter scale is again E L mh , but with 1E    over the 
whole domain.

We next describe a more ad hoc method of tying the local filter scale to the local grid scale. This method is 
not without drawbacks, but it is simpler and faster than the method based on an anisotropic and spatially 
varying Laplacian. We call this filter the simple fixed factor filter.

Let 0E L  be the discretization of the Laplacian if all the cells had the same size. Since the cell sizes are assumed 
equal, the matrix 0E L  should be symmetric. If we simply replaced ( )E p L  by 0( )E p L  in the definition of the 
filter it would imply that we were filtering as if all the grid cells were the same size, which is equivalent 
to making the scale of the filter relative to the scale of the local grid. Unfortunately, this would no longer 
preserve the integral. To rectify this problem we propose a cell-size weighted filter, which amounts to the 
following recipe:

1.  Weight the input data by cell sizes
2.  Apply the filter assuming the cell sizes are equal
3.  Divide the result by the cell sizes

We next show that this filter preserves the integral at the discrete level. First note that weighting by the cell 
size is equivalent to multiplication by a diagonal matrix E W whose diagonal entries are the cell sizes, so the 
above filter corresponds to

1
0( ) .p f W L Wf (31)

Figure 5. The effect of changing E   on the filter polynomial 2( )E p k  for the polynomial E p from Equation 30.
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The inner product (10) can be written in the form , TE   f g f Wg, and recall that the discrete integral is ,E  1 f . 
To prove that the new filter conserves the integral we follow (17), and find that

1
0, ( ) (0) , .T Tp p       1 f 1 WW L Wf 1 Wf 1 f (32)

The above sequence uses the facts that 0E L  is symmetric, which implies 0 0( )T TE 1 L L 1 , that any consistent 
discretization of the Laplacian with no-flux boundary conditions will have 0E L 1 0, and that (0) 1E p  .

Applying the discrete Laplacian under the assumption that all cell sizes are equal is much simpler than 
using an anisotropic Laplacian, and the algorithm can thus be much faster. On the other hand, this ad hoc 
method no longer has the property that the constant vector is left unchanged by the filter. Note that the 
simple fixed factor filter is anisotropic whenever the grid spacing is anisotropic, and it is spatially varying 
whenever the grid spacing is non-uniform.

2.7. Variance Reduction

In some situations, it is desirable to enforce that the filtered field has less total variance than the unfiltered 
field, that is, for functions

2 2( ) d ( ) df f   x x x x (33)

and for the discrete case

, , .    f f f f (34)

To translate this into a condition on the diffusion-based smoothers developed here, expand E f in the ortho-
normal basis of eigenvectors of E L

1
.ˆn

i i
i

f


 f q (35)

The condition of variance reduction becomes

 22 2 2

11
( ) .ˆ ˆ

nn

i i i
ii

f f p k


  (36)

In order for this to be satisfied for any possible vector E f this requires | ( ) |p ki
2

1  for every iE k  up to the largest 
one represented on the model grid, that is, nE k . The eigenvalues 2

iE k  of the discrete Laplacian are usual-
ly not known exactly, so a sufficient condition for variance reduction would be that | ( )|p k

2
1  for every 

max0E k k   where max nE k k . It is worth noting that this condition applies to E p and not to the target filter. 
Even if the target filter satisfies this condition, the polynomial E p might not satisfy it. (In all examples in the 
left column of Figure 2 both the target filter and the approximating polynomials do satisfy this condition.) 
It is also worth noting that failure to satisfy this condition does not guarantee that the filtered field has more 
total variance than the unfiltered field, but only that it might happen in some cases.

2.8. The Effective Kernel Implied by the Diffusion-Based Filter

If the spatial filter were defined by a discrete approximation of a kernel-based spatial filter (8) then the value 
of E f  at the thE i  grid cell would be

, ,i i j ij j
j

f w g f    g f (37)

where iE g  is the effective filter kernel corresponding to the thE i  cell. Note that f w
i i i
  e f, / , where iE e  is a vector 

of zeros with 1 at the thE i  grid cell. Next note that
1 1, ( ) ( ) , ,i i i

i i
f p p

w w
       L f L e fe (38)

which implies that g L e
i i i

p w ( ) / . We can thus compute the effective filter kernel that corresponds to 
( )E p L  at the thE i  grid cell by applying the filter to iE e  and then dividing the result by iE w . The same arguments 

can be used to find the effective filter kernel associated with the spatially varying filters of Section 2.6.
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Note that if the filter kernel is non-negative 0ijE g  , then applying the filter to a positive quantity will yield a 
positive result, since the sum in Equation 37 has both positive and zero terms, but no negative terms. In par-
ticular, if the weights are non-negative it will guarantee that the variance is also non-negative. To see this, note

0
2 2 2  









 w g f f w g f fj ij j i j ij j

j
i

j

( ) (39)

which uses the fact that j j ij
w g  1 and the definition of iE f  (37), and assumes 0ijE g  . Equation 39 directly 

implies that 2 2 0i iE f f  .

The proof above can be lifted to the continuous case as follows. Supposing that the convolution kernel 0E G   
in Equation 8, we may define

   2 220 ( , ) ( , ) ( ) ( ) d ( ) 2 ( ) ( ) ( )dD G f f f f f f        x y x x x y x x x y y


 (40)

The result that  22( ) ( ) 0E f f x x  follows by plugging in E y x.

Note that if the filter kernel ever takes a negative value, then it is no longer guaranteed to preserve positivity 
in the sense that E f  may have negative values even when all the values in E f are positive. Similarly if the filter 
kernel ever takes a negative value then it could produce a negative local variance 2 2E f f . The spectral trun-
cation filter is such an example having negative weights.

The right column of Figure 2 computes the filter kernels associated with the polynomial approximations of 
the boxcar, Gaussian, and taper filters in the left column of Figure 2. The standard equispaced, second-order 
Laplacian (25) was used, with a nondimensional grid size of 1. The upper right panel illustrates that the ker-
nel associated with the polynomial approximation of the boxcar filter does not converge to the actual boxcar 
kernel, though it is close. One reason for this discrepancy is the fact that the boxcar target (4) was formulat-
ed by reference to a continuous Fourier transform, which is not a one-to-one match to the discrete version. 
Another reason is that the effective kernel depends on the discretization of the Laplacian; a higher-order 
discretization would result in a slightly different effective kernel. Despite these discrepancies, the effective 
kernel of the polynomial approximation to a Gaussian target still converges to a close approximation of the 
expected Gaussian kernel, as can be seen in the middle right panel of Figure 2.

3. Illustrative Examples
In this section, we present examples using model output and observational data to illustrate the various 
filter properties and capabilities. An open-source Python package implementing the diffusion-based fil-
ters described in Section 2, called gcm-filters, is currently under development and will be described else-
where. This Python code includes implementations of the discrete scalar and vector Laplacians on a variety 
of spherical grids for different ocean general circulation models. All examples that show the filtering of 
two-dimensional data use a second-order discrete Laplacian (on a 5-point stencil) with no-flux boundary 
condition.

3.1. Effective Kernels

We begin with an example showing effective filter kernels (see Section 2.8) for various configurations of 
the filters, noting especially how the filter kernel adapts near boundaries. Figure 6 shows effective kernels 
centered at four locations in the Antarctic Circumpolar Current. The grid is a 2/3° nominal resolution tri-
pole grid of the Modular Ocean Model version 6 (MOM6). The top row shows filters with a Gaussian target, 
while the bottom row shows filters with the taper target. It is clear that the taper target produces kernels 
with negative weights, while the Gaussian target does not. In the top left panel, we chose a filter scale of 
100 km for the kernel centered at (100E W, 50E S), and 1,000 km for the remaining three kernels. In the bottom 
left, we reduced the large filter scale from 1,000  to 300 km, because the Taper filter became numerically 
unstable at high latitudes for a filter scale of 1,000 km. The right column shows the anisotropic versions of 
the filters in the right column where the filter scale has been decreased by a factor of 3 in the meridional 
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direction. It is interesting to note that the kernel in the upper left panel near the southern tip of South 
America does not curl around into the Argentine basin, as might be expected for a convolution-type filter.

3.2. Spatially Varying Filter Scale

Figure 7 illustrates the ability of our filters to vary their length scales over the domain by using variable 
E   as described in Section 2.6. We filter the vertical component of relative vorticity at the surface from the 

submesoscale-resolving MITgcm simulation of the Scotia Sea with a resolution of 1 192/  described in Bach-
man et al. (2017). In the map of the unfiltered vorticity (top panel), large scales are evident in the Antarctic 
Circumpolar Current to the east of Drake Passage, where the first baroclinic deformation radius tends to be 

(10)E O  km and is generally smaller than the eddies themselves. Small scales are ubiquitous over the conti-
nental shelf off the eastern coast of Argentina, where the deformation radius is (1)E O  km and is much closer 
to the eddy scale. We demonstrate the spatially varying filter by choosing the length scale of the Gaussian 
filter so that the filter scale is proportional to the local first baroclinic deformation radius. In making this 
choice we expect that more features will be filtered out in the areas where the dynamics tend to be larger 
than the deformation scale, as shown in the map of the filtered vorticity (middle panel) and the difference, 
that is, the eddy vorticity field (lower panel).

Figure 6. Effective filter kernels for Gaussian (top) and Taper (bottom) filters with various filter scales on the 2/3° MOM6 grid, centered at four points in the 
Antarctic Circumpolar Current. Top left: Filter scale is 100 km for the effective kernel centered at (100E W, 50E S), and 1,000 km for the remaining three kernels. 
Bottom left: Same filter scales as top left, except that the large filter scale was reduced from 1,000  to 300 km. Right column: The anisotropic versions of the 
filters in the left column, but with a third of the length scale in the meridional direction. MOM6 land points are shaded in gray.
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3.3. Non-Commutation of the Filter and Spatial Derivatives

Figure 8 illustrates the lack of commutation of the filters with spatial derivatives in the presence of bound-
aries. We compute a large-scale part of the vertical component of relative vorticity in two ways, first by 
filtering the velocity using a vector Laplacian and then computing vorticity as ˆE    uz , and second by 
computing the vertical vorticity directly from the velocity and then applying the filter to the result ˆE    uz . 
The filter is isotropic, and uses a Gaussian target with a length scale of 300  km. The data are from a 
state-of-the-art climate model, GFDL-CM2.6 (Delworth et al., 2012; Griffies et al., 2015), obtained through 
the Pangeo cloud data library (Abernathey et al., 2021). The ocean component of GFDL-CM2.6 utilizes the 
GFDL-MOM5 numerical ocean code with a nominal resolution of 0.1°. The upper left panel shows the raw 
vorticity in the northwest Pacific, while the upper right and lower left panels show the filtered vorticity and 

Figure 7. Surface relative vorticity from the MITgcm simulation in Bachman et al. (2017) demonstrating a spatially 
variable filter scale using a Gaussian target filter. The filter applied to the raw field (top panel) results in smoothing 
where the first baroclinic deformation radius is small compared to the scale of the motion (middle panel), which is 
reflected in the difference between the raw and filtered fields (bottom panel). Units are 1sE  .
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the vorticity obtained from the filtered velocity, respectively. The lower right panel shows the difference 
between the two smoothed vorticities, and it is clear that the differences are extremely small over most of 
the domains. Significant differences arise only near the boundaries, as can be seen especially in the vicinity 
of the Philippines, which serves to illustrate the fact that the filter does not commute with derivatives near 
boundaries.

The ability to commute the filter with spatial derivatives can be restored by treating velocity values on land 
as zero, following Aluie et al. (2018). To illustrate the difference of this approach compared to using stress-
free boundary conditions in the vector Laplacian, we compare in Figure 9 the filtered surface velocity that 
results from the two approaches. The left column shows the zonal component of velocity and the right 
column shows the meridional component. The top row shows the unfiltered velocity; the second row shows 
the velocity filtered using the stress-free condition on the discrete vector Laplacian; the third row shows the 
filtered velocity that results from setting velocity to zero over land; the fourth row is the second row minus 
the third row. Setting the velocity to zero over land allows the filter to commute with derivatives, but at the 
cost of reducing the strength of currents near land. For example, the Florida Current is much weaker in the 
third row than in the second row. It is thus clear that both methods have pros and cons near boundaries. 
The data used in Figure 9 are from a JRA55-forced 2/3° MOM6 simulation; the filter has a length scale of 
500 km and a Gaussian target.

3.4. Negative Weights and Eddy Kinetic Energy

The Gaussian filter's effective kernel has positive weights, while the more scale-selective taper filter's ef-
fective kernel typically has negative weights reminiscent of the sinc kernel that corresponds to the spectral 

Figure 8. Surface relative vorticity fields taken from GFDL-CM2.6 data. The upper left panel shows the unfiltered 
vorticity, the upper right shows the filtered vorticity (using a scalar Laplacian), the bottom left panel shows the vorticity 
computed from filtered velocities (using a vector Laplacian), and the bottom right panel shows the difference between 
the latter two fields. The filter length scale is 300 km.
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Figure 9. The upper two panels show the surface velocity of a JRA55-forced 2/3° MOM6 simulation averaged over 1 
month. The second row shows the velocities filtered with a Gaussian target and a filter scale of 500 km. The filter uses a 
vector Laplacian with a stress-free boundary condition. The third row shows filtered velocities as in the second row, but 
ignoring land boundaries with velocity values set to zero on land. The fourth row is the second row minus the third row. 
The left column shows zonal components of velocity while the right column shows meridional components.
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truncation filter. These negative weights can produce negative values for non-negative quantities like eddy 
kinetic energy (EKE). We define EKE as

EKE  
1

2

1

2

2 2
| | | | .u u (41)

This definition of EKE has the virtue that the total kinetic energy is exactly the sum of the mean and eddy 
kinetic energies. When the weights are non-negative this definition of EKE will also be non-negative, as 
discussed in Section 2.8. An alternative proof based only on having a convex kernel is given by Sadek and 
Aluie (2018). A proof specific to EKE can be found in Vreman et al. (1994).

Figure 10 illustrates the application of our filters to a single 5-day average of AVISO estimates of abso-
lute geostrophic velocity on a 0.25° grid obtained from Copernicus European Earth Observation program 
(https://marine.copernicus.eu) via Pangeo (Abernathey et al., 2021). The upper left panel shows the unfil-
tered surface kinetic energy defined as | | /u

2
2. To compute mean surface kinetic energy we use the simple 

fixed factor Laplacian with a filter scale four times the local grid-scale, that is, a filter scale of 1°. The center 
panel in the upper row shows the mean kinetic energy defined as | | /u

2
2 using a Gaussian target, while the 

upper right panel shows the mean kinetic energy obtained using the taper target. The lower panels show the 
surface EKE defined according to Equation 41. It is clear that the negative weights in the taper filter lead to 
locally negative values of surface EKE.

The alternative definition | | /u
2

2  where E   u u u can also produce negative values of EKE when the filter 
has negative weights. As a simple example consider the case where E u  is nonzero at only one grid point. Then 
| |u

2  is proportional to the effective kernel centered at that point, and Figure 6 shows that the taper filter's 
effective kernel has negative weights.

3.5. Application to One-Dimensional Observational Data

Our final example in Figure 11 illustrates the application of our filters to one-dimensional data, specifically 
along-track altimeter observations of absolute dynamic topography used to estimate cross-track geostrophic 
velocity. This example is included not only to highlight additional capabilities of this filtering framework, 

Figure 10. The left panel shows surface kinetic energy calculated from absolute geostrophic velocities estimated using AVISO measurements of sea surface 
height. Velocities are provided on a 1/4E  degree grid and filtered using a Gaussian (middle column) and taper (right column) simple fixed filter with filter scale 
four times the local grid scale. Definitions of mean kinetic energy (MKE) and eddy kinetic energy (EKE) are provided in the text.

https://marine.copernicus.eu
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but also to encourage its use on in-situ velocity or tracer measurements to permit scale-aware observation-
al-model comparisons. We apply three filters (boxcar, Gaussian, and taper) to cross-track geostrophic veloc-
ity estimates along a single track of the Jason-2 altimeter located in the Western North Atlantic. Velocities 
are interpolated to 20 km spacing and then filtered to a 100 km filter scale. The upper panel shows a single 
cycle of cross-track geostrophic velocity as a function of along-track distance moving north to south (gray 
lines show all cycles completed at 10-day intervals over a 2-year period). The single cycle (black) is then 
filtered using each of the three filter types with EKE shown in the lower panel. The three filters produce 
nearly indistinguishable large-scale fields, but the EKE defined according to Equation 41, shown in the 
lower panel, displays notable differences. Specifically, the taper filter's negative weights lead to occasional 
negative values for EKE.

4. Conclusions
We have presented a new method for spatially filtering gridded data that only relies on the availability of a 
discrete Laplacian operator. The method involves repeated steps of form 21b, and is therefore analogous to 
smoothing via diffusion. (More details on this point are provided in Section 2.4.1.) The new filters provide 
an efficient way of implementing something close to a Gaussian kernel convolution; they also allow the 
scale selectiveness (i.e., the shape) of the filter to be tuned as desired. As they require only the ability to ap-
ply a discrete Laplacian operator, these filters can be used with a wide range of data types, including output 
from models on unstructured grids, and gridded observational data sets.

The only time the filter commutes with derivatives is when the domain has no boundaries and the filter 
scale is constant over the domain. If desired, ocean boundaries can be eliminated by treating velocity values 
on land as zero, following Aluie et al. (2018); however, to preserve the integral with this method, the integral 
has to be extended over land. The basic method can be generalized to allow for anisotropic, that is, direc-
tion-dependent, as well as spatially varying filter scales. It is our hope that the new method and forthcoming 
software package will enable an increase in scale-dependent analysis of Earth system data, particularly for 
the purposes of subgrid-scale parameterization, though by no means limited to such.

Figure 11. The upper panel shows cross-track geostrophic velocities along the Jason-2 altimeter track number 176 spanning a 2-year period (gray). A single 
cycle is selected (black) and filtered using the boxcar (blue), taper (red), and Gaussian (green) filters using a 100 km filter scale. The inset figure locates track 
176 in the Western North Atlantic with along-track distance increasing north to south. The lower panel shows eddy kinetic energy defined using the cross-track 
geostrophic velocities above and filtered using boxcar, taper, and Gaussian filters. Shaded black regions identify locations of negative EKE associated with the 
taper filter.
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Appendix A: Solving the Optimization Problem to Find the Filter Polynomial
We may find a polynomial that approximates the target filter by solving an optimization problem of the 
form

,ˆ( ) arg min ( ) ( )tp s G s p s ‖ ‖ (A1)

where 2E s k  and E p is a polynomial that must satisfy (0) 1E p  . To enable rapid solution of this optimization 
problem it is convenient to use a weighted 2E L  norm on max[0, ]E s s , where (as noted above) we may set 
s k dmax max  2  /dxmin 2

 where E d is the dimension of the spatial domain. Using the Chebyshev norm 
is known to produce solutions that are close to the solution obtained from the max norm (Trefethen, 2019, 
theorem 16.1), so we adopt the Chebyshev norm

2
2 max

0
max

( ( ) ( ))( ) ( ) d .
)

ˆˆ
(

s t
t C

G s p sG s p s s
s s s


  


‖ ‖ (A2)

The polynomial must satisfy (0) 1E p   in order to conserve the integral, and for convenience we also apply 
the condition max( ) 0E p s  . This allows us to solve the optimization problem using the Galerkin basis de-
scribed by Shen (1995). To be precise, we let

2

0max
ˆ( ) 1 ( ),

N

i i
i

sp s p s
s





    (A3)

where ( )iE s  are the polynomial basis of Shen (1995), satisfying max(0) ( ) 0i iE s   , and ( )iE s  is a polynomial 
of degree 2E i  . Collecting the Galerkin coefficients ˆiE p  into a vector ˆE p, the loss function (A2) can be written

ˆ ˆ ˆ2T T T p Mp p b b b (A4)

where

( ), ( )ij i j CM s s    (A5)

max
( ), ( ) 1 ,ˆ

i i t C
sb s G s

s
     (A6)

and , CE    denotes the Chebyshev inner product. The entries of E M are known analytically (Shen, 1995), and 
the entries of E b are computed using Gauss-Chebyshev quadrature with 1E N   points. Setting the gradient of 
this quadratic loss function to zero yields the following linear system for the optimal polynomial coefficients

.ˆ Mp b (A7)

Once a target filter (ˆ )tE G k  has been specified, one must also choose the degree E N of the polynomial E p. As E N 
increases the filter approaches the target filter—the approximation converges provided that ˆ

tE G  is absolutely 
continuous (Trefethen, 2013, Theorem 7.2). As E N increases the computational cost of the filter grows be-
cause applying the filter requires applying the discrete Laplacian E N times. It is therefore desirable to choose 
some tradeoff between cost and accuracy. The Python packageg gcm-filters (gcm-filters, 2021) has a default 
setting for E N that guarantees not more than 1% error in the difference between ˆ

tE G  and E p; the user can also 
override this choice with any desired value of E N.

Appendix B: Commuting the Filter and Derivatives
This section explores conditions under which our filters commute with spatial derivatives, which was one 
of the main goals in the design of convolution-based spatial filters on the sphere in Aluie (2019). Filters with 
spatially varying properties (cf. Section 2.6) do not commute with derivatives, since they are analogous to 
integration against a spatially varying kernel (i.e., Equation 8). (Note that anisotropic diffusion with tensor 

E K I does not generally commute with derivatives on a curved surface even when the disparate length 
scales of the filter are constant.) We thus consider in this section only the versions of our filters with a fixed 
length scale. We first consider domains with boundaries, showing that our filters do not commute in this 
case, and then turn to the surface of a full sphere, without topographic boundaries.
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Although our filters are defined entirely in discrete terms, it is natural to think in terms of the continuous 
limit, and this limit causes confusion. Consider for simplicity the case of the following filter for a scalar 
function ( )E f x  on [0,1]E x  :

1

11 .f f
s

 
   
 

 (B1)

This filter obviously commutes with derivatives, but it is in some sense not the correct continuous version 
of our discrete filter. The reason is that the discrete version always assumes no-flux boundary conditions on 
the data, because no other boundary condition is guaranteed to conserve the integral. Indeed the filter (B1) 
is not guaranteed to conserve the integral unless E f  satisfies no-flux (or periodic) boundary conditions. This 
is no limitation in the discrete case, since the no-flux Laplacian can be computed for any data. On the other 
hand, if one applies the discrete Laplacian with a no-flux assumption and then takes the limit of infinite res-
olution the result does not converge to E f  unless E f  actually satisfies no-flux boundary conditions. Instead, 
it converges to E f  plus Dirac delta distributions on the boundary. (This is analogous to the delta sheets of 
potential vorticity discussed by Bretherton [1966]).

In the correct continuous limit, equation (B1) is only defined for functions E f  that satisfy (0) (1) 0E f f  .  
With this more careful definition of the continuous limit of the filter, one can ask again whether it com-
mutes with the spatial derivative. If one attempts to define ( ) ( )E g x f x  and then apply the filter to E g, the 
result is not defined unless E g also satisfies no-flux conditions, that is, (0) (1) 0E f f   . So in the continuous 
limit, the filter will not commute with differentiation for functions with 0E f    on the boundaries. For high-
er-order filters the conditions for commutation are even more stringent, requiring derivatives up to high 
order to all be zero on the boundary.

An alternative perspective is afforded by the fact that our discrete filter is equivalent to a discrete kernel 
smoothing, per the arguments of Section 2.8. In the presence of boundaries, the shape of the kernel varies 
in space, as can be seen in Figure 6. The continuous analog is integrated against a spatially varying kernel 
(Equation 8), which does not commute with spatial derivatives.

In the case without boundaries, for example, on a sphere, there is no such difficulty. As long as the contin-
uous differential operators commute (e.g., a Laplacian and a gradient), the discrete operators should also 
commute, at least up to discretization errors. The convolution-based spatial filters of Aluie (2019) only com-
mute with derivatives in the absence of boundaries; this difficulty can be avoided by treating velocity values 
outside the domain (e.g., on land) as zero (Aluie et al., 2018). A similar method can be used with our filters 
if desired: values outside the domain can be treated as zero (see right panel of Figure 9).

Data Availability Statement
Scripts used to generate the figures, including links to the publicly available data, can be found at (Loose 
et al., 2021). The authors are grateful to J. Kenigson for providing us with output from a MOM6 model 
simulation. An open-source Python package implementing this algorithm, called gcm-filters, is current-
ly under development (see gcm-filters, 2021). An early version of the package was used to generate the 
results in this paper. A study describing the software itself is in preparation for Journal of Open Source 
Software, to coincide with the first release. In the present manuscript, our focus is the algorithm itself, not 
the implementation.
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