42 research outputs found

    Measuring selection for genes that promote long life in a historical human population

    Get PDF

    Natural selection and the evolution of asynchronous aging

    Get PDF

    Disentangling pre- and postnatal maternal age effects on offspring performance in an insect with elaborate maternal care

    Get PDF
    Maternal effect senescence has attracted much recent scientific interest. However, the age-related effects of pre- and postnatal maternal age are often conflated, as these naturally originate from the same individual. Additionally, many maternal effect senescence studies fail to account for potential biases associated with selective disappearance. Here we use a cross-fostered laboratory population of a burying beetle, Nicrophorus vespilloides, to examine both the effects of female pre- and postnatal maternal age on offspring life-history traits and the postcare outcomes of mothers while accounting for selective disappearance of postnatal caregivers. Neither pre- nor postnatal maternal age affected offspring longevity or larval weight at hatching, and postnatal age had no effect on postcare maternal outcomes except to confirm the presence of actuarial senescence. There was weak evidence for concave relationships between two larval traits (dispersal weight and survival) and the age of egg producers. Selective disappearance of caregivers had no clear effect on any of the measured offspring traits. Contrary to predictions from evolutionary theory, maternal effect senescence and reproductive effort increases do not always manifest, and current theory may be insufficient to account for the true diversity of aging patterns relating to maternal care

    Individual fitness and phenotypic selection in age-structured populations with constant growth rates.

    Get PDF
    Powerful multiple regression-based approaches are commonly used to measure the strength of phenotypic selection, which is the statistical association between individual fitness and trait values. Age structure and overlapping generations complicate determinations of individual fitness, contributing to the popularity of alternative methods for measuring natural selection that do not depend upon such measures. The application of regression-based techniques for measuring selection in these situations requires a demographically appropriate, conceptually sound, and observable measure of individual fitness. It has been suggested that Fisher’s reproductive value applied to an individual at its birth is such a definition. Here I offer support for this assertion by showing that multiple regression applied to this measure and vital rates (age-specific survival and fertility rates) yields the same selection gradients for vital rates as those inferred from Hamilton’s classical results. I discuss how multiple regressions, applied to individual reproductive value at birth, can be used efficiently to estimate measures of phenotypic selection that are problematic for sensitivity analyses. These include nonlinear selection, components of the opportunity for selection, and multi-level selection

    The distribution of the Lansing effect across animal species

    Get PDF

    Triparental ageing in a laboratory population of an insect with maternal care

    Get PDF
    Parental age at reproduction influences offspring size and survival by affecting prenatal and postnatal conditions in a wide variety of species, including humans. However, most investigations into this manifestation of ageing focus upon maternal age effects; the effects of paternal age and interactions between maternal and paternal age are often neglected. Furthermore, even when maternal age effects are studied, pre- and post-natal effects are often confounded. Using a cross-fostered experimental design, we investigated the joint effects of pre-natal paternal and maternal and post-natal maternal ages on five traits related to offspring outcomes in a laboratory population of a species of burying beetle, Nicrophorus vespilloides. We found a significant positive effect of the age of the egg producer on larval survival to dispersal. We found more statistical evidence for interaction effects, which acted on larval survival and egg length. Both interaction effects were negative and involved the age of the egg-producer, indicating that age-related pre-natal maternal improvements were mitigated by increasing age in fathers and foster mothers. These results agree with an early study that found little evidence for maternal senescence, but it emphasizes that parental age interactions may be an important contributor to ageing patterns. We discuss how the peculiar life history of this species may promote selection to resist the evolution of parental age effects, and how this might have influenced our ability to detect senescence

    The evolution of maternal effect senescence

    Get PDF
    corecore