3,159 research outputs found

    Moving towards a wave-resolved approach to forecasting mountain wave induced clear air turbulence

    Get PDF
    Mountain wave breaking in the lower stratosphere is one of the major causes of atmospheric turbulence encountered in commercial aviation, which in turn is the cause of most weather-related aircraft incidents. In the case of clear air turbulence (CAT), there are no visual clues and pilots are reliant on operational forecasts and reports from other aircraft. Traditionally mountain waves have been sub-grid-scale in global numerical weather prediction (NWP) models, but recent developments in NWP mean that some forecast centres (e.g. the UK Met Office) are now producing operational global forecasts that resolve mountain wave activity explicitly, allowing predictions of mountain wave induced turbulence with greater accuracy and confidence than previously possible. Using a bespoke turbulent kinetic energy diagnostic, the Met Office Unified Model (MetUM) is shown to produce useful forecasts of mountain CAT during three case studies over Greenland, and to outperform the current operational Met Office CAT prediction product (the World Area Forecast Centre (WAFC) London gridded CAT product) in doing so. In a long term, 17-month, verification, MetUM forecasts yield a turbulence prediction hit rate of 80% with an accompanying false alarm rate of under 40%. These skill scores are a considerable improvement on those reported for the mountain wave component of the WAFC product, although no direct comparison is available. The major implication of this work is that sophisticated global NWP models are now sufficiently advanced to provide skilful forecasts of mountain wave turbulence

    Evaluation of automated airway morphological quantification for assessing fibrosing lung disease

    Get PDF
    Abnormal airway dilatation, termed traction bronchiectasis, is a typical feature of idiopathic pulmonary fibrosis (IPF). Volumetric computed tomography (CT) imaging captures the loss of normal airway tapering in IPF. We postulated that automated quantification of airway abnormalities could provide estimates of IPF disease extent and severity. We propose AirQuant, an automated computational pipeline that systematically parcellates the airway tree into its lobes and generational branches from a deep learning based airway segmentation, deriving airway structural measures from chest CT. Importantly, AirQuant prevents the occurrence of spurious airway branches by thick wave propagation and removes loops in the airway-tree by graph search, overcoming limitations of existing airway skeletonisation algorithms. Tapering between airway segments (intertapering) and airway tortuosity computed by AirQuant were compared between 14 healthy participants and 14 IPF patients. Airway intertapering was significantly reduced in IPF patients, and airway tortuosity was significantly increased when compared to healthy controls. Differences were most marked in the lower lobes, conforming to the typical distribution of IPF-related damage. AirQuant is an open-source pipeline that avoids limitations of existing airway quantification algorithms and has clinical interpretability. Automated airway measurements may have potential as novel imaging biomarkers of IPF severity and disease extent

    Roy-Steiner equations for pion-nucleon scattering

    Get PDF
    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high-energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the ππNˉN\pi\pi\to\bar NN partial waves into the form of a Muskhelishvili-Omn\`es problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.Comment: 106 pages, 18 figures; version published in JHE

    Repetition Enhancement for Frequency-Modulated but Not Unmodulated Sounds: A Human MEG Study

    Get PDF
    BACKGROUND: Decoding of frequency-modulated (FM) sounds is essential for phoneme identification. This study investigates selectivity to FM direction in the human auditory system. METHODOLOGY/PRINCIPAL FINDINGS: Magnetoencephalography was recorded in 10 adults during a two-tone adaptation paradigm with a 200-ms interstimulus-interval. Stimuli were pairs of either same or different frequency modulation direction. To control that FM repetition effects cannot be accounted for by their on- and offset properties, we additionally assessed responses to pairs of unmodulated tones with either same or different frequency composition. For the FM sweeps, N1m event-related magnetic field components were found at 103 and 130 ms after onset of the first (S1) and second stimulus (S2), respectively. This was followed by a sustained component starting at about 200 ms after S2. The sustained response was significantly stronger for stimulation with the same compared to different FM direction. This effect was not observed for the non-modulated control stimuli. CONCLUSIONS/SIGNIFICANCE: Low-level processing of FM sounds was characterized by repetition enhancement to stimulus pairs with same versus different FM directions. This effect was FM-specific; it did not occur for unmodulated tones. The present findings may reflect specific interactions between frequency separation and temporal distance in the processing of consecutive FM sweeps

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on four research projects and a list of publications.National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Agreement 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-1107U.S. Navy - Office of Naval Research Grant N00014-92-J-1616Digital Equipment CorporationJoint Services Electronics Program Contract DAAL03-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD13U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD30U.S. Department of Transportation Agreement DTRS-57-92-C-00054TTD1DARPA/Consortium for Superconducting Electronics Contract MDA972-90-C-0021National Science Foundation Fellowship MIP 88-5876

    In vivo and ex vivo effects of propofol on myocardial performance in rats with obstructive jaundice

    Get PDF
    BACKGROUND: Responsiveness of the 'jaundiced heart' to propofol is not completely understood. The purpose of this study was to evaluate the effect of propofol on myocardial performance in rats with obstructive jaundice. METHODS: Male Sprague-Dawley rats (n = 40) were randomly allocated into two groups, twenty underwent bile duct ligation (BDL), and 20 underwent a sham operation. Seven days after the surgery, propofol was administered in vivo and ex vivo (Langendorff preparations). Heart rate, left ventricular end-systolic pressure (LVESP) left ventricular end-diastolic pressure (LVEDP), and maximal rate for left ventricular pressure rise and decline (+/- dP/dtmax ) were measured to determine the influence of propofol on the cardiac function of rats. RESULTS: Impaired basal cardiac function was observed in the isolated BDL hearts, whereas in vivo indices of basal cardiac function (LVESP and +/- dP/dt) in vivo were significantly higher in rats that underwent BDL compared with controls. With low or intermediate concentrations of propofol, these indices of cardiac function were within the normal physiologic range in both groups, and responsiveness to propofol was unaffected by BDL. When the highest concentration of propofol was administrated, a significant decline in cardiac function was observed in the BDL group. CONCLUSIONS: In rats that underwent BDL, basal cardiac performance was better in vivo and worse ex vivo compared with controls. Low and intermediate concentrations of propofol did not appear to impair cardiac function in rats with obstructive jaundice.published_or_final_versio

    Yes, research can inform health policy; but can we bridge the 'Do-Knowing It's Been Done' gap?

    Get PDF
    Copyright @ 2011 Hanney and Gonzalez.Provisional Abstract: This editorial introduces a new Supplement in Health Research Policy and Systems and highlighs the importance of assessing the impact of health research by examining whether we can move from 'Know-Do' to 'Do-Knowing It's Been Done'This article is made available through the Brunel Open Access publishing fund

    Sequential Use of Transcriptional Profiling, Expression Quantitative Trait Mapping, and Gene Association Implicates MMP20 in Human Kidney Aging

    Get PDF
    Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6×10−5, empirical p = 0.01) that explains 1%–2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans
    corecore