6 research outputs found

    Hydrogen isotope behavior during rhyolite glass hydration under hydrothermal conditions

    Get PDF
    The diffusion of molecular water (H2Om) from the environment into volcanic glass can hydrate the glass up to several wt% at low temperature over long timescales. During this process, the water imprints its hydrogen isotope composition (δDH2O) to the glass (δDgl) offset by a glass-H2O fractionation factor (ΔDgl-H2O = δDgl – δDH2O) which is approximately -33‰ at Earth surface temperatures. Glasses hydrate much more rapidly at higher, sub-magmatic temperatures as they interact with H2O during eruption, transport, and emplacement. To aid in the interpretation of δDgl in natural samples, we present hydrogen isotope results from vapor hydration experiments conducted at 175–375 oC for durations of hours to months using natural volcanic glasses. The results can be divided into two thermal regimes: above 250 oC and below 250 oC. Lower temperature experiments yield raw ΔDgl-H2O values in the range of -33 ± 11‰. Experiments at 225 oC using both positive and negative initial ΔDgl-H2O values converge on this range of values, suggesting this range represents the approximate equilibrium fractionation for H isotopes between glass and H2O vapor (103lnαgl-H2O) below 250 oC. Variation in ΔDgl-H2O (-33 ± 11‰) between different experiments and glasses may arise from incomplete hydration, analytical uncertainty, differences in glass chemistry, and/or subordinate kinetic isotope effects. Experiments above 250 oC yield unexpectedly low δDgl values with ΔDgl-H2O values of ≤–85‰. While alteration alone is incapable of explaining the data, these run products have more extensive surface alteration and are not interpreted to reflect equilibrium fractionation between glass and H2O vapor. Fourier transform infrared spectroscopy (FTIR) shows that glass can hydrate with as much as 5.9 wt% H2Om and 1.0 wt% hydroxl (OH-) in the highest P-T experiment at 375 oC and 21.1 MPa. Therefore, we employ a 1D isotope diffusion– reaction model of glass hydration to evaluate the roles of equilibrium fractionation, isotope diffusion, water speciation reactions internal to the glass, and changing boundary conditions (e.g. alteration and dissolution). At lower temperatures, the best fitting model results to experimental data for low silica rhyolite (LSR) glasses require only an equilibrium fractionation factor and yield 103lnαgl-H2O values of -33‰± 5‰and -25‰± 5‰at 175 oC and 225 oC, respectively. At higher temperatures, ΔDgl-H2O is dominated by boundary layer effects during glass hydration and glass surface alteration. The modeled bulk δDgl value is highly responsive to changes in the δDgl boundary condition regardless of the magnitude of other kinetic effects. Observed glass dissolution and surficial secondary mineral formation are likely to impose a disequilibrium boundary layer that drives extreme δDgl fractionation with progressive glass hydration. These results indicate that the observed ΔDgl-H2O of ~-33 ± 11‰ can be cautiously applied as an equilibrium 103lnαgl-H2O value to natural silicic glasses hydrated below 250 oC to identify hydration sources. This approximate ΔDgl-H2O may be applicable to even higher temperature glasses hydrated on short timescales (of seconds to minutes) in phreatomagmatic or submarine eruptions before H2O in the glass is primarily affected by boundary layer effects associated with alteration on the glass surface

    Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Get PDF
    International audienceContinental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4 kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer)

    Opal-A in Glassy Pumice, Acid Alteration, and the 1817 Phreatomagmatic Eruption at Kawah Ijen (Java), Indonesia

    No full text
    At Kawah Ijen (Indonesia), vigorous SO2 and HCl degassing sustains a hyperacid lake (pH ~0) and intensely alters the subsurface, producing widespread residual silica and advanced argillic alteration products. In 1817, a VEI 2 phreatomagmatic eruption evacuated the lake, depositing a widespread layer of muddy ash fall, and sending lahars down river drainages. We discovered multiple types of opaline silica in juvenile low-silica dacite pumice and in particles within co-erupted laharic sediments. Most spectacular are opal-replaced phenocrysts of plagioclase and pyroxene adjacent to pristine matrix glass and melt inclusions. Opal-bearing pumice has been found at numerous sites, including where post-eruption infiltration of acid water is unlikely. Through detailed analyses of an initial sampling of 1817 eruption products, we find evidence for multiple origins of opaline materials in pumice and laharic sediments. Evidently, magma encountered acid-altered materials in the subsurface and triggered phreatomagmatic eruptions. Syn-eruptive incorporation of opal-alunite clasts, layered opal, and fragment-filled vesicles of opal and glass, all suggest magma-rock interactions in concert with vesiculation, followed by cooling within minutes. Our experiments at magmatic temperature confirm that the opaline materials would show noticeable degradation in time periods longer than a few tens of minutes. Some glassy laharic sedimentary grains are more andesitic than the main pumice type and may represent older volcanic materials that were altered beneath the lake bottom and were forcefully ejected during the 1817 eruption. A post-eruptive origin remains likely for most of the opal-replaced phenocrysts in pumice. Experiments at 25°C and 100°C reveal that when fresh pumice is bathed in Kawah Ijen hyperacid fluid for 6 weeks, plagioclase is replaced without altering either matrix glass or melt inclusions. Moreover, lack of evidence for high-temperature annealing of the opal suggests that post-eruption alteration of pumice is more likely than pre-eruption envelopment of euhedral opal-replaced phenocrysts in dacitic melt. At Ijen and elsewhere, the ascent of magma into hydrous acid-altered mineral assemblages (e.g., opal, kaolinite, alunite) could induce rapid dehydration of hydrous minerals and amorphous materials, generating considerable steam and contributing to magmatic-hydrothermal and phreatomagmatic explosions
    corecore