2,276 research outputs found

    Validity of Infrared 3-dimensional Scanning for Estimation of Body Composition: A 4-Compartment Model Comparison

    Get PDF
    Multiple infrared 3-dimensional (3D) scanning technologies exist, including time of flight (ToF) scanners and structured light scanners with static (SL-S) and dynamic (SL-D) configurations. ToF scanners measure depth by using the round-trip time of reflected photons, whereas SL scanners measure deformations in light patterns and allow for creation of a depth image using geometric triangulation. Recently, 3D scanning technologies have been proposed as novel methods of body composition assessment. PURPOSE: The purpose of this analysis was to examine the validity of four different commercially-available 3D scanners for estimation of body fat percentage (BF%) as compared to a 4-compartment (4C) model criterion. METHODS: After an overnight fast, 101 adults (63 F, 38 M; age: 29.3 ± 13.5 y; BMI: 24.3 ± 3.9 kg/m2; BF%: 24.6 ± 8.3%) completed assessments via dual-energy x-ray absorptiometry (DXA), air displacement plethysmography (ADP), bioimpedance spectroscopy (BIS), a standard body mass scale, and four infrared 3D scanners. Two scanners (3DSSL-D1; 3DSSL-D2) utilized structured light scanning with a dynamic configuration, one utilized structured light scanning with a static configuration (3DSSL-S), and one utilized time-of-flight technology (3DSToF). Using the equation of Wang et al. (2002), a criterion 4C estimate of BF% was obtained using DXA for bone mineral, ADP for body volume, scale for body mass, and BIS for total body water. BF% estimates were compared using one-way ANOVA with Bonferroni adjustment for multiple comparisons, and additional evaluations were conducted using the correlation coefficient (r), constant error (CE), standard error of the estimate (SEE), total error (TE), and 95% limits of agreement (LOA). RESULTS: Estimates of BF% did not significantly differ between 4C and any of the 3D scanners. However, metrics of group, individual, and prediction errors varied between scanners: 3DSSL-D1: p=1.0; CE: 0.4%; r: 0.91; SEE: 2.5%; TE: 3.6%; LOA: ±7.0%; 3DSSL-D2: p= 1.0; CE: 0.8%; r: 0.86; SEE: 4.2%; TE: 4.7%; LOA: ±9.2%; 3DSSL-S: p= 1.0; CE: 1.0%; r: 0.81; SEE: 4.0%; TE: 5.0%; LOA: ±9.7%; 3DSToF: p=0.08; CE: -2.9%; r: 0.86, SEE: 2.5%; TE: 5.2%; LOA: ±8.6%. CONCLUSION: All three structured light scanners exhibited low magnitudes of group error (CE ≤ 1%) and may be valid assessment methods when analyzing the body composition of groups. 3DSSL-D1 exhibited the lowest group-level error (i.e. CE), prediction errors (i.e. SEE; TE), and individual error (i.e. LOA) of all scanners. Therefore, this device was deemed the most valid 3D scanner for body composition assessment. 3DSSL-D2, 3DSSL-S, and 3DSToF exhibited comparable TE, although group-level error was lower in 3DSSL-D2 and 3DSSL-S, while the SEE and individual-level error was lower for 3DSToF. However, individual-level errors were relatively high with all scanners (LOA ≥ 7%), which calls into question the utility of these methods for assessing the body composition of individuals. Nonetheless, additional research is needed regarding the ability of 3DS to successfully detect changes in body composition over time

    Validity of Four-Compartment Model Body Fat Using Single- or Multi-frequency Bioelectrical Impedance Analysis to Estimate Body Water

    Get PDF
    Most common body composition assessment techniques make assumptions about the body, including the density and hydration of fat-free mass (FFM). An advantage of the four-compartment (4C) model is the ability to take these FFM characteristics into account when assessing body composition, thus reducing potential error. The total body water (TBW) estimate utilized in 4C models is particularly important due to the large contribution of water to an adult human’s total body mass (~40 - 70%) and FFM (~68 - 81%); however, the impact of utilizing different estimates of TBW within 4C model has not been fully explored. PURPOSE: The purpose of this investigation was to examine the validity of body fat percentage (BF%) estimates produced by 4C models utilizing single- or multi-frequency bioelectrical impedance analysis (BIA) TBW estimates as compared to a criterion 4C with TBW from bioimpedance spectroscopy (BIS). METHODS: After an overnight food and fluid fast, a sample of 101 adults (63 F, 38 M; age: 29.3 ± 13.5 y; BMI: 24.3 ± 4.0 kg/m2; BF%: 24.5 ± 8.3%) completed assessments via dual-energy x-ray absorptiometry (DXA), air displacement plethysmography (ADP), BIS, single-frequency BIA (SFBIA), multi-frequency BIA (MFBIA) and a body mass scale. A criterion 4C model (4CBIS) estimate of BF% was obtained using DXA for bone mineral, ADP for body volume, scale for body mass, and BIS for TBW. BIS was used as the reference TBW method due to its more direct estimation of TBW via mathematical procedures (i.e. Cole modeling and mixture theories) as compared to the prediction equations used by BIA. Alternate 4C estimates of BF% were produced using TBW values from MFBIA (4CMFBIA) and SFBIA (4CSFBIA). BF% estimates were compared using one-way ANOVA, and additional evaluations were conducted using the coefficient of determination (R2), constant error (CE), total error (TE), and 95% limits of agreement (LOA). RESULTS: BF% did not differ between 4CBIS (24.5 ± 8.3%), 4CMFBIA (24.4 ± 8.9%), and 4CSFBIA (25.7 ± 8.3%; p=0.52). 4CMFBIA exhibited negligible CE (-0.1 ± 2.3%), R2 of 0.97, TE of 2.3%, and LOA of 4.4%. 4CSFBIA exhibited a small CE (1.2 ± 1.2%), R2 of 0.98, TE of 1.6%, and LOA of 2.3%. CONCLUSION: At the group level, BF% estimates did not differ between any 4C model, indicating that both SFBIA and MFBIA can serve as viable alternatives to BIS for TBW estimation. Although the magnitude of group error (i.e. CE) was slightly smaller in 4CMFBIA, the individual error (i.e. LOA) and total error were smaller in 4CSFBIA,indicating that SFBIA TBW estimates may be more appropriate when tracking body composition changes within individuals using a 4C model. While the MFBIA and SFBIA technologies employed in the present study exhibited good validity, these results may not be attributable to all BIA analyzers. The quality of assessment device, affordability, portability and ease of use should be considered when utilizing an impedance-based technology for TBW estimation in a 4C model

    MIRC-X: a highly-sensitive six telescope interferometric imager at the CHARA Array

    Get PDF
    MIRC-X (Michigan InfraRed Combiner-eXeter) is a new highly-sensitive six-telescope interferometric imager installed at the CHARA Array that provides an angular resolution equivalent of up to a 330 m diameter baseline telescope in J and H band wavelengths (λ2B∼0.6\tfrac{\lambda}{2B}\sim0.6 milli-arcseconds). We upgraded the original MIRC (Michigan InfraRed Combiner) instrument to improve sensitivity and wavelength coverage in two phases. First, a revolutionary sub-electron noise and fast-frame rate C-RED ONE camera based on a SAPHIRA detector was installed. Second, a new-generation beam combiner was designed and commissioned to (i) maximize sensitivity, (ii) extend the wavelength coverage to J-band, and (iii) enable polarization observations. A low-latency and fast-frame rate control software enables high-efficiency observations and fringe tracking for the forthcoming instruments at CHARA Array. Since mid-2017, MIRC-X has been offered to the community and has demonstrated best-case H-band sensitivity down to 8.2 correlated magnitude. MIRC-X uses single-mode fibers to coherently combine light of six telescopes simultaneously with an image-plane combination scheme and delivers a visibility precision better than 1%, and closure phase precision better than 1∘1^\circ. MIRC-X aims at (i) imaging protoplanetary disks, (ii) detecting exoplanets with precise astrometry, and (iii) imaging stellar surfaces and star-spots at an unprecedented angular resolution in the near-infrared. In this paper, we present the instrument design, installation, operation, and on-sky results, and demonstrate the imaging and astrometric capability of MIRC-X on the binary system ι\iota Peg. The purpose of this paper is to provide a solid reference for studies based on MIRC-X data and to inspire future instruments in optical interferometry.Comment: 31 pages, 29 figures, accepted for publication in The Astronomical Journa

    Effect of dietary energy source on pregnancy rates and reproductive physiology of pastured beef heifers

    Get PDF
    Proper production of steroid hormones, such as progesterone (P4), is essential for maintenance of pregnancy. Provision of gluconeogenic substrates from the diet may alter postabsorptive energy supplies and associated hormone signaling in a manner supportive of elevating P4 concentrations. Crossbred Angus heifers (n=27) were balanced for pre-trial bodyweight (BW) and body condition score (BCS), then assigned to isoenergetic diets leveraging starch (ES) or fat (EF) as the primary source of energy (45.7% starch vs 11.5% fat). The heifers were placed on the assigned diets 8 days prior to the initiation of estrous synchronization and continued the diets through the second pregnancy diagnosis, 52 days after the initial insemination. On day 28 post-breeding, pregnancy status was diagnosed via ultrasonography. Measurements of follicle size and number were collected via rectal palpation and ultrasonography on days −10, −8, −4, and day 0 relative to breeding. Blood samples were collected on days −10, 1 through 7, 10, 14, 18, 21, 24, and 28 to analyze plasma for P4 concentrations and placental-associated glycoprotein (PAG) concentrations. Data were analyzed using a linear mixed effects model with a fixed effect for treatment and a random effect for pen. Observations collected over time were analyzed using a repeated measures approach with fixed effects for treatment, time, initial condition, and a random effect for pen. Interactions between treatment and pregnancy status were also tested for PAG and P4 concentrations. No treatment differences were observed in final BCS (P=0.12) and total dry matter intake (DMI; P=0.51), though heifers on the ES treatment tended to reach an increased BW (P=0.10). Although heifers fed ES diets had numerically higher conception rates compared to heifers fed EF diets (71.4% vs. 66.7%), there was no statistically significant difference. Furthermore, there were no significant differences observed among diets in terms of pregnancy outcomes, follicle size, or number. A treatment by pregnancy status interaction was detected for both PAG and P4 concentrations. These results suggest that short-term dietary starch supplementation provided around the time of breeding can result in shifts to reproductive hormone abundance that may be conducive for pregnancy establishment
    • …
    corecore