12 research outputs found

    The CH radical at radio wavelengths: Revisiting emission in the 3.3GHz ground state lines

    Full text link
    The intensities of the three widely observed radio-wavelength hyperfine structure (HFS) lines between the {\Lambda}-doublet components of the rotational ground state of CH are inconsistent with LTE and indicate ubiquitous population inversion. While this can be qualitatively understood assuming a pumping cycle that involves collisional excitation processes, the relative intensities of the lines and in particular the dominance of the lowest frequency satellite line has not been well understood. This has limited the use of CH radio emission as a tracer of the molecular interstellar medium. We present the first interferometric observations, with the Karl G. Jansky Very Large Array, of the CH 9 cm ground state HFS transitions at 3.264 GHz, 3.335 GHz, and 3.349 GHz toward four high mass star-forming regions (SFRs) Sgr B2 (M), G34.26+0.15, W49 (N), and W51. We investigate the nature of the (generally) weak CH ground state masers by employing synergies between the ground state HFS transitions themselves and with the far-infrared lines, near 149 {\mu}m (2 THz), that connect these levels to an also HFS split rotationally excited level. Employing recently calculated collisional rate coefficients, we perform statistical equilibrium calculations with the non-LTE radiative transfer code MOLPOP-CEP in order to model the excitation conditions traced by the ground state HFS lines of CH and to infer the physical conditions in the emitting regions while also accounting for the effects of far-infrared line overlap.Comment: Accepted for publication in A&A 18 pages, 15 figures and 4 table

    First detection of 13CH in the interstellar medium

    Full text link
    In recent years, a plethora of high spectral resolution observations of sub-mm and FIR transitions of methylidene (CH), have demonstrated this radical to be a valuable proxy for H2, that can be used for characterising molecular gas within the interstellar medium (ISM) on a Galactic scale, including the CO-dark component. Here we report the discovery of the 13CH isotopologue in the ISM using the upGREAT receiver on board SOFIA. We have detected the three hyperfine structure components of the 2THz frequency transition from its ground-state toward four high-mass star-forming regions and determine 13CH column densities. The ubiquity of molecules containing carbon in the ISM has turned the determination of the ratio between the abundances of carbon's two stable isotopes, 12C/13C, into a cornerstone for Galactic chemical evolution studies. Whilst displaying a rising gradient with Galactocentric distance, this ratio, when measured using observations of different molecules (CO, H2CO, and others) shows systematic variations depending on the tracer used. These observed inconsistencies may arise from optical depth effects, chemical fractionation or isotope-selective photo-dissociation. Formed from C+ either via UV-driven or turbulence-driven chemistry, CH reflects the fractionation of C+, and does not show any significant fractionation effects unlike other molecules previously used to determine the 12C/13C isotopic ratio which make it an ideal tracer for the 12C/13C ratio throughout the Galaxy. Therefore, by comparing the derived column densities of 13CH with previously obtained SOFIA data of the corresponding transitions of the main isotopologue 12CH, we derive 12C/13C isotopic ratios toward Sgr B2(M), G34.26+0.15, W49(N) and W51E. Adding our values derived from 12/13CH to previous calculations of the Galactic isotopic gradient we derive a revised value of 12C/13C = 5.85(0.50)R_GC + 15.03(3.40)

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    First detection of deuterated methylidyne (CD) in the interstellar medium

    No full text
    While the abundance of elemental deuterium is relatively low (D/H ~ a few ×10−5), orders of magnitude higher D/H abundance ratios have been found for many interstellar molecules, enhanced by deuterium fractionation. In cold molecular clouds (T < 20 K), deuterium fractionation is driven by the H2D+ ion, whereas at higher temperatures (T ≥ 20–30 K) gas-phase deuteration is controlled by reactions with CH2D+ and C2HD+. While the role of H2D+ in driving cold interstellar deuterium chemistry is well understood, thanks to observational constraints from direct measurements of H2D+, deuteration stemming from CH2D+ is far less understood as a result of the absence of direct observational constraints of its key ions. Therefore, making use of chemical surrogates is imperative in order to explore deuterium chemistry at intermediate temperatures. Formed at an early stage of ion-molecule chemistry directly from the dissociative recombination of CH3+{\rm{CH}}_3^ + (CH2D+), CH (CD) is an ideal tracer for investigating deuterium substitution initiated by reactions with CH2D+. This paper reports the first detection of CD in the interstellar medium (ISM), carried out using the APEX 12 m telescope toward the widely studied low-mass protostellar system IRAS 16293–2422. Observed in absorption towards the envelope of the central protostar, the D/H ratio derived from the column densities of CD and CH is found to be 0.016 ± 0.003. This is an order of magnitude lower than the values found for other small molecules like C2H and H2CO observed in emission but whose formation, which is similar to that of CH, is also initiated via pathways involving warm deuterium chemistry. Gas-phase chemical models reproducing the CD/CH abundance ratio suggest that it reflects ‘warm deuterium chemistry’ (which ensues in moderately warm conditions of the ISM) and illustrates the potential use of the CD/CH ratio in constraining the gas temperatures of the envelope gas clouds it probes

    Extending the view of ArH plus chemistry in diffuse clouds

    No full text
    Context. One of the surprises of the Herschel mission was the detection of ArH+ towards the Crab Nebula in emission and in absorption towards strong Galactic background sources. Although these detections were limited to the first quadrant of the Galaxy, the existing data suggest that ArH+ ubiquitously and exclusively probes the diffuse atomic regions of the interstellar medium. Aims. In this study, we extend the coverage of ArH+ to other parts of the Galaxy with new observations of its J = 1 0 transition along seven Galactic sight lines towards bright sub-millimetre continuum sources. We aim to benchmark its efficiency as a tracer of purely atomic gas by evaluating its correlation (or lack of correlation as suggested by chemical models) with other well-known atomic gas tracers such as OH+ and H2O+ and the molecular gas tracer CH. Methods. The observations of the J = 1 0 line of ArH+ near 617.5 GHz were made feasible with the new, sensitive SEPIA660 receiver on the APEX 12 m telescope. Furthermore, the two sidebands of this receiver allowed us to observe the NKaKc = 11;0 10;1 transitions of para-H2O+ at 607.227 GHz simultaneously with the ArH+ line. Results. We modelled the optically thin absorption spectra of the different species and subsequently derived their column densities. By analysing the steady state chemistry of OH+ and o-H2O+, we derive on average a cosmic-ray ionisation rate, similar to p(H), of (2 :3 similar to 0 :3) similar to 10 16 s 1 towards the sight lines studied in this work. Using the derived values of similar to p(H) and the observed ArH+ abundances we constrain the molecular fraction of the gas traced by ArH+ to lie below 2 similar to 10 2 with a median value of 8 :8 similar to 10 4. Combined, our observations of ArH+, OH+, H2O+, and CH probe different regimes of the interstellar medium, from diffuse atomic to diffuse and translucent molecular clouds. Over Galactic scales, we see that the distribution of N(ArH+) is associated with that of N(H), particularly in the inner Galaxy (within 7 kpc of the Galactic centre) with potentially even contributions from the warm neutral medium phase of atomic gas at larger galactocentric distances. We derive an average ortho-to-para ratio for H2O+ of 2:1 similar to 1:0, which corresponds to a nuclear spin temperature of 41 K, consistent with the typical gas temperatures of diffuse clouds

    ArH

    No full text
    Context. Along several sight lines within the Milky Way ArH+ has been ubiquitously detected with only one detection in extragalactic environments, namely along two sight lines in the redshift z = 0.89 absorber towards the lensed blazar PKS 1830-211. Being formed in predominantly atomic gas by reactions between Ar+, which were initially ionised by cosmic rays and molecular hydrogen, ArH+ has been shown to be an excellent tracer of atomic gas as well as the impinging cosmic-ray ionisation rates. Aims. In this work, we attempt to extend the observations of ArH+ in extragalactic sources to examine its use as a tracer of the atomic interstellar medium (ISM) in these galaxies. Methods. We report the detection of ArH+ towards two luminous nearby galaxies, NGC 253 and NGC 4945, and the non-detection towards Arp 220 observed using the SEPIA660 receiver on the APEX 12 m telescope. In addition, the two sidebands of this receiver allowed us to observe the NKaKc = 11,0 − 10,1 transitions of another atomic gas tracer p-H2O+ at 607.227 GHz with the ArH+ line, simultaneously. We modelled the optically thin spectra of both species and compared their observed line profiles with that of other well-known atomic gas tracers such as OH+ and o-H2O+ and diffuse and dense molecular gas tracers HF and CO, respectively. Results. Assuming that the observed absorption from the ArH+, OH+, and H2O+ molecules are affected by the same flux of cosmic rays, we investigate the properties of the different cloud layers. Based on a steady-state analysis of the chemistry of these three species and using statistical equilibrium calculations, we estimate the molecular fraction traced by ArH+ to be ∼​10−3 and find that ArH+ resides in gas volumes with low electron densities. We further study the ortho-to-para ratio of H2O+ and find that the derived ratios do not significantly deviate from the equilibrium value of three with spin temperatures greater than 15 and 24 K

    Fingerprinting the effects of hyperfine structure on CH and OH far infrared spectra using Wiener filter deconvolution

    No full text
    Context. Despite being a commonly observed feature, the modification of the velocity structure in spectral line profiles by hyperfine structure complicates the interpretation of spectroscopic data. This is particularly true for observations of simple molecules such as CH and OH toward the inner Galaxy, which show a great deal of velocity crowding. Aims. In this paper, we investigate the influence of hyperfine splitting on complex spectral lines, with the aim of evaluating canonical abundances by decomposing their dependence on hyperfine structures. This is achieved from first principles through deconvolution. Methods. We present high spectral resolution observations of the rotational ground state transitions of CH near 2 THz seen in absorption toward the strong FIR-continuum sources AGAL010.62 − 00.384, AGAL034.258+00.154, AGAL327.293 − 00.579, AGAL330.954 − 00.182, AGAL332.826 − 00.549, AGAL351.581 − 00.352 and SgrB2(M). These were observed with the GREAT instrument on board SOFIA. The observed line profiles of CH were deconvolved from the imprint left by the lines’ hyperfine structures using the Wiener filter deconvolution, an optimised kernel acting on direct deconvolution. Results. The quantitative analysis of the deconvolved spectra first entails the computation of CH column densities. Reliable N(CH) values are of importance owing to the status of CH as a powerful tracer for H2 in the diffuse regions of the interstellar medium. The N(OH)/N(CH) column density ratio is found to vary within an order of magnitude with values ranging from one to 10, for the individual sources that are located outside the Galactic centre. Using CH as a surrogate for H2, we determined the abundance of the OH molecule to be X(OH) = 1.09 × 10−7 with respect to H2. The radial distribution of CH column densities along the sightlines probed in this study, excluding SgrB2(M), showcase a dual peaked distribution peaking between 5 and 7 kpc. The similarity between the correspondingly derived column density profile of H2 with that of the CO-dark H2 gas traced by the cold neutral medium component of [CII] 158 μm emission across the Galactic plane, further emphasises the use of CH as a tracer for H2

    The Chemistry of Chlorine-bearing Species in the Diffuse Interstellar Medium, and New SOFIA/GREAT* Observations of HCl+

    No full text
    We have revisited the chemistry of chlorine-bearing species in the diffuse interstellar medium with new observations of the HCl+ molecular ion and new astrochemical models. Using the GREAT instrument on board SOFIA, we observed the (2)pi(3/2) J = 5/2 - 3/2 transition of HCl+ near 1444 GHz toward the bright THz continuum source W49N. We detected absorption by diffuse foreground gas unassociated with the background source, and were able to thereby measure the distribution of HCl+ along the sight line. We interpreted the observational data using an updated version of an astrochemical model used previously in a theoretical study of Cl-bearing interstellar molecules. The abundance of HCl+ was found to be almost constant relative to the related H2Cl+ ion, but the observed n(H2Cl+)/n(HCl+) abundance ratio exceeds the predictions of our astrochemical model by an order of magnitude. This discrepancy suggests that the rate of the primary destruction process for H2Cl+, dissociative recombination, has been significantly overestimated. For HCl+, the model predictions can provide a satisfactory fit to the observed column densities along the W49N sight line while simultaneously accounting for the OH+ and H2O+ column densities
    corecore