329 research outputs found
Dynamics and Deposition of Sediment-Bearing Multi- Pulsed Flows and Geological Implication
Copyright © 2019, SEPM (Society for Sedimentary Geology) Previous studies on dilute, multi-pulsed, subaqueous saline flows have demonstrated that pulses will inevitably advect forwards to merge with the flow front. On the assumption that pulse merging occurs in natural-scale turbidity currents, it was suggested that multi-pulsed turbidites that display vertical cycles of coarsening and fining would transition laterally to single-pulsed, normally graded turbidites beyond the point of pulse merging. In this study, experiments of dilute, single- and multi-pulsed sediment-bearing flows (turbidity currents) are conducted to test the linkages between downstream flow evolution and associated deposit structure. Experimental data confirm that pulse merging occurs in laboratory-scale turbidity currents. However, only a weak correspondence was seen between longitudinal variations in the internal flow dynamics and the vertical structure of deposits; multi-pulsed deposits were documented, but transitioned to single-pulsed deposits before the pulse merging point. This early transition is attributed to rapid sedimentation-related depletion of the coarser-grained suspended fraction in the laboratory setting, whose absence may have prevented the distal development of multi-pulsed deposits; this factor complicates estimation of the transition point in natural-scale turbidite systems
Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash
Natural weathering at coal power plants ash dams occurs via processes such as carbonation, dissolution, co-precipitation and fluid transport mechanisms which are responsible for the long-term chemical, physical and geochemical changes in the ash. Very little information is available on the natural carbon capture potential of wet or dry ash dams. This study investigated the extent of carbon capture in a wet-dumped ash dam and the mineralogical changes promoting CO2 capture, comparing this natural phenomenon with accelerated ex-situ mineral carbonation of fresh fly ash (FA). Significant levels of trace elements of Sr, Ba and Zr were present in both fresh and weathered ash. However Nb, Y, Sr, Th and Ba were found to be enriched in weathered ash compared to fresh ash. Mineralogically, fresh ash is made up of quartz, mullite, hematite, magnetite and lime while weathered and carbonated ashes contained additional phases such as calcite and aragonite. Up to 6.5 wt % CO2 was captured by the fresh FA with a 60% conversion of calcium to CaCO3 via accelerated carbonation (carried out at 2 h, 4Mpa, 90 o C, bulk ash and a S/L ratio of 1). On the other hand 6.8 wt % CO2 was found to have been captured by natural carbonation over a period of 20 years of wet disposed ash. Thus natural carbonation in the ash dumps is significant and may be effective in capturing CO2.Web of Scienc
DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking
In this paper we present a tool that performs CUDA accelerated LTL Model
Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA
architecture in order to efficiently detect the presence of accepting cycles in
a directed graph. Accepting cycle detection is the core algorithmic procedure
in automata-based LTL Model Checking. We demonstrate that the tool outperforms
non-accelerated version of the algorithm and we discuss where the limits of the
tool are and what we intend to do in the future to avoid them
Dynamics and deposition of sediment-bearing multi-pulsed flows and geological implication
Previous studies on dilute, multi-pulsed, subaqueous saline flows have demonstrated that pulses will inevitably advect forwards to merge with the flow front. On the assumption that pulse merging occurs in natural-scale turbidity currents, it was suggested that multi-pulsed turbidites that display vertical cycles of coarsening and fining would transition laterally to single-pulsed, normally graded turbidites beyond the point of pulse merging. In this study, experiments of dilute, single- and multi-pulsed sediment-bearing flows (turbidity currents) are conducted to test the linkages between downstream flow evolution and associated deposit structure. Experimental data confirm that pulse merging occurs in laboratory-scale turbidity currents. However, only a weak correspondence was seen between longitudinal variations in the internal flow dynamics and the vertical structure of deposits; multi-pulsed deposits were documented, but transitioned to single-pulsed deposits before the pulse merging point. This early transition is attributed to rapid sedimentation-related depletion of the coarser-grained suspended fraction in the laboratory setting, whose absence may have prevented the distal development of multi-pulsed deposits; this factor complicates estimation of the transition point in natural-scale turbidite systems
Polymerogenic neuroserpin causes mitochondrial alterations and activates NFÎşB but not the UPR in a neuronal model of neurodegeneration FENIB
The neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons. Our previous work showed that expression of G392E NS in differentiated NPCs induced an adaptive response through the upregulation of several genes involved in the defence against oxidative stress, and that pharmacological reduction of the antioxidant defences by drug treatments rendered G392E NS neurons more susceptible to apoptosis than control neurons. In this study, we assessed mitochondrial distribution and found a higher percentage of perinuclear localisation in G392E NS neurons, particularly in those containing polymers, a phenotype that was enhanced by glutathione chelation and rescued by antioxidant molecules. Mitochondrial membrane potential and contact sites between mitochondria and the ER were reduced in neurons expressing the G392E mutation. These alterations were associated with a pattern of ER stress that involved the ER overload response but not the unfolded protein response. Our results suggest that intracellular accumulation of NS polymers affects the interaction between the ER and mitochondria, causing mitochondrial alterations that contribute to the neuronal degeneration seen in FENIB patients
Recommended from our members
Embedded Agency in Institutional Theory: Problem or Paradox
In “Beyond Constraining and Enabling: Toward New Microfoundations in Institutional Theory” Professor Cardinale (2018) seeks to expose and correct “shortcomings” (p.133) in institutional theory’s conceptualization of structure, agency and their relationship. To this end, he theorizes the “different mechanism[s] through which actors are embedded in structure” (p.134). We agree that institutional theory’s microfoundations merit theoretical attention and development. However, we question the premise that the issue of agency in institutional theory is adequately, or even plausibly, formulated as one of “embeddedness”. We also challenge the relevance of Professor Cardinale’s engagement of Husserl to help solve what we argue to be a phantom problem central to his theory
Trastuzumab and first-line taxane chemotherapy in metastatic breast cancer patients with a HER2-negative tumor and HER2-positive circulating tumor cells:a phase II trial
Purpose: HER2 overexpressing circulating tumor cells (CTCs) are observed in up to 25% of HER2-negative metastatic breast cancer patients. Since targeted anti-HER2 therapy has drastically improved clinical outcomes of patients with HER2-positive breast cancer, we hypothesized that patients with HER2 overexpressing CTCs might benefit from the addition of trastuzumab to chemotherapy. Methods: In this single-arm, phase II trial, patients with HER2-positive CTCs received trastuzumab as addition to first-line treatment with taxane chemotherapy. Patients with detectable CTCs but without HER2 overexpression that received taxane chemotherapy only, were used as control group. The primary outcome measure was progression-free rate at 6 months (PFR6), with a target of 80%. In November 2022, the study was terminated early due to slow patient accrual. Results: 63 patients were screened, of which eight patients had HER2-positive CTCs and were treated with trastuzumab. The median number of CTCs was 15 per 7.5 ml of blood (range 1–131) in patients with HER2-positive CTCs, compared to median 5 (range 1–1047) in the control group. PFR6 was 50% in the trastuzumab group and 54% in the taxane monotherapy group, with no significant difference in median PFS (8 versus 9 months, p = 0.51). Conclusion: No clinical benefit of trastuzumab was observed, although this study was performed in a limited number of patients. Additionally, we observed a strong correlation between the number of evaluable CTCs and the presence of HER2-positive CTCs. We argue that randomized studies investigating agents that are proven to be solely effective in the HER2-positive patient group in patients with HER2-positive CTCs and HER2-negative tissue are currently infeasible. Several factors contribute to this impracticality, including the need for more stringent thresholds, and the rapidly evolving landscape of cancer treatments.</p
Trastuzumab and first-line taxane chemotherapy in metastatic breast cancer patients with a HER2-negative tumor and HER2-positive circulating tumor cells:a phase II trial
Purpose: HER2 overexpressing circulating tumor cells (CTCs) are observed in up to 25% of HER2-negative metastatic breast cancer patients. Since targeted anti-HER2 therapy has drastically improved clinical outcomes of patients with HER2-positive breast cancer, we hypothesized that patients with HER2 overexpressing CTCs might benefit from the addition of trastuzumab to chemotherapy. Methods: In this single-arm, phase II trial, patients with HER2-positive CTCs received trastuzumab as addition to first-line treatment with taxane chemotherapy. Patients with detectable CTCs but without HER2 overexpression that received taxane chemotherapy only, were used as control group. The primary outcome measure was progression-free rate at 6 months (PFR6), with a target of 80%. In November 2022, the study was terminated early due to slow patient accrual. Results: 63 patients were screened, of which eight patients had HER2-positive CTCs and were treated with trastuzumab. The median number of CTCs was 15 per 7.5 ml of blood (range 1–131) in patients with HER2-positive CTCs, compared to median 5 (range 1–1047) in the control group. PFR6 was 50% in the trastuzumab group and 54% in the taxane monotherapy group, with no significant difference in median PFS (8 versus 9 months, p = 0.51). Conclusion: No clinical benefit of trastuzumab was observed, although this study was performed in a limited number of patients. Additionally, we observed a strong correlation between the number of evaluable CTCs and the presence of HER2-positive CTCs. We argue that randomized studies investigating agents that are proven to be solely effective in the HER2-positive patient group in patients with HER2-positive CTCs and HER2-negative tissue are currently infeasible. Several factors contribute to this impracticality, including the need for more stringent thresholds, and the rapidly evolving landscape of cancer treatments.</p
Epidemiology of Plasmodium infections in Flores Island, Indonesia using real-time PCR
BACKGROUND:\ud
DNA-based diagnostic methods have been shown to be highly sensitive and specific for the detection of malaria. An 18S-rRNA-based, real-time polymerase chain reaction (PCR) was used to determine the prevalence and intensity of Plasmodium infections on Flores Island, Indonesia.\ud
METHODS:\ud
Microscopy and real-time multiplex PCR for the detection of Plasmodium species was performed on blood samples collected in a population-based study in Nangapanda Flores Island, Indonesia.\ud
RESULTS:\ud
A total 1,509 blood samples were analysed. Real-time PCR revealed prevalence for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae to be 14.5%, 13.2%, and 1.9% respectively. Sub-microscopic parasitaemia were found in more than 80% of all positive cases. The prevalence of P. falciparum and P. vivax was significantly higher in subjects younger than 20 years (p <= 0.01). In the present study, among non-symptomatic healthy individuals, anaemia was strongly correlated with the prevalence and load of P. falciparum infections (p <= 0.01; p = 0.02) and with the load of P. vivax infections (p = 0.01) as detected with real-time PCR. Subjects with AB blood group tend to have a higher risk of being infected with P. falciparum and P. vivax when compared to other blood groups.\ud
CONCLUSION:\ud
The present study has shown that real-time PCR provides more insight in the epidemiology of Plasmodium infections and can be used as a monitoring tool in the battle against malaria. The unsurpassed sensitivity of real-time PCR reveals that sub microscopic infections are common in this area, which are likely to play an important role in transmission and control.Trial registration: Trials number ISRCTN83830814
Efficient Parallel Statistical Model Checking of Biochemical Networks
We consider the problem of verifying stochastic models of biochemical
networks against behavioral properties expressed in temporal logic terms. Exact
probabilistic verification approaches such as, for example, CSL/PCTL model
checking, are undermined by a huge computational demand which rule them out for
most real case studies. Less demanding approaches, such as statistical model
checking, estimate the likelihood that a property is satisfied by sampling
executions out of the stochastic model. We propose a methodology for
efficiently estimating the likelihood that a LTL property P holds of a
stochastic model of a biochemical network. As with other statistical
verification techniques, the methodology we propose uses a stochastic
simulation algorithm for generating execution samples, however there are three
key aspects that improve the efficiency: first, the sample generation is driven
by on-the-fly verification of P which results in optimal overall simulation
time. Second, the confidence interval estimation for the probability of P to
hold is based on an efficient variant of the Wilson method which ensures a
faster convergence. Third, the whole methodology is designed according to a
parallel fashion and a prototype software tool has been implemented that
performs the sampling/verification process in parallel over an HPC
architecture
- …