54,731 research outputs found

    Amplitude expansion of the binary phase field crystal model

    Full text link
    Amplitude representations of a binary phase field crystal model are developed for a two dimensional triangular lattice and three dimensional BCC and FCC crystal structures. The relationship between these amplitude equations and the standard phase field models for binary alloy solidification with elasticity are derived, providing an explicit connection between phase field crystal and phase field models. Sample simulations of solute migration at grain boundaries, eutectic solidification and quantum dot formation on nano-membranes are also presented.Comment: 11 pages, 8 figure

    Photoionization yield and absorption coeffi- cient of xenon in the region 860-1022 deg angstrom

    Get PDF
    Photoionization yield and absorption coefficient of xenon gas measured by photoelectric method

    Some Intensity Measurements in the Vacuum Ultraviolet

    Get PDF
    Intensity measurements in vacuum ultraviolet - photoelectric yields of untreated metals and semiconductors measured by calibrated thermocoupl

    Cosmic Superstring Scattering in Backgrounds

    Get PDF
    We generalize the calculation of cosmic superstring reconnection probability to non-trivial backgrounds. This is done by modeling cosmic strings as wound tachyon modes in the 0B theory, and the spacetime effective action is then used to couple this to background fields. Simple examples are given including trivial and warped compactifications. Generalization to (p,q)(p,q) strings is discussed.Comment: 12 pages, 2 figures; v2: references adde

    Group velocity and causality in standard relativistic resistive magnetohydrodynamics

    Full text link
    Group velocity of electromagnetic waves in plasmas derived by standard relativistic resistive MHD (resistive RMHD) equations is superluminal. If we assume that the group velocity represents the propagation velocity of a signal, we have to worry about the causality problem. That is, some acausal phenomena may be induced, such that information transportation to the absolute past and spontaneous decrease in the entropy. Here, we tried to find the acausal phenomena using standard resistive RMHD numerical simulations in the suggested situation of the acausal phenomena. The calculation results showed that even in such situations no acausal effect happens. The numerical result with respect to the velocity limit of the information transportation is consistent with a linear theory of wave train propagation. Our results assure that we can use these equations without problems of acausal phenomena.Comment: 28 pages, 10 figure

    Evolution of a localized thermal explosion in a reactive gas

    Get PDF
    Experimental observations of ignition in premixed gaseous reactants indicate that perfectly homogeneous initiation is practically unrealizable. Instead, combustion first sets in, as a rule, at small, discrete sites where inherent inhomogeneities cause chemical activity to proceed preferentially and lead to localized explosions. Combustion waves propagating away from these hot spots or reaction centers eventually envelop the remaining bulk. This study examines the spatial structure and temporal evolution of a hot spot for a model involving Arrhenius kinetics. The hot spot, characterized by peaks in pressure and temperature with little diminution in local density, is shown to have one of two possible self-similar structures. The analysis employs a combination of asymptotics and numerics, and terminates when pressure and temperature in the explosion have peaked

    Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle

    Full text link
    We study the distance dependence of the rate of electronic excitation energy transfer from a dye molecule to a metal nanoparticle. Using the spherical jellium model, we evaluate the rates corresponding to the excitation of l = 1, 2, and 3 modes of the nanoparticle. Our calculation takes into account both the electron-hole pair and the plasmon excitations of the nanoparticle. The rate follows conventional R^-6 dependence at large distances while small deviations from this behavior are observed at shorter distances. Within the framework of the jellium model, it is not possible to attribute the experimentally observed d^-4 dependence of the rate to energy transfer to plasmons or e-h pair excitations.Comment: 4 figure

    Draft genome sequence of "Candidatus Cronobacter colletis" NCTC 14934T, a new species in the genus Cronobacter

    Get PDF
    Members of the Cronobacter genus are associated with serious infections in neonates. This is the first report of the draft genome sequence for the newly proposed species Cronobacter colletis

    Two Black Hole Holography, Lensing and Intensity

    Get PDF
    We numerically verify the analysis of the "expanding horizon" theory of Susskind in relation to the 't Hooft holographic conjecture. By using a numerical simulation to work out the image formed by two black holes upon a screen very far away, it is seen that it is impossible for a horizon to hide behind another. We also compute the intensity distribution of such an arrangement.Comment: 10 page
    corecore