We study the distance dependence of the rate of electronic excitation energy
transfer from a dye molecule to a metal nanoparticle. Using the spherical
jellium model, we evaluate the rates corresponding to the excitation of l = 1,
2, and 3 modes of the nanoparticle. Our calculation takes into account both the
electron-hole pair and the plasmon excitations of the nanoparticle. The rate
follows conventional R^-6 dependence at large distances while small deviations
from this behavior are observed at shorter distances. Within the framework of
the jellium model, it is not possible to attribute the experimentally observed
d^-4 dependence of the rate to energy transfer to plasmons or e-h pair
excitations.Comment: 4 figure