19 research outputs found

    The SAFARI Detector System

    Full text link
    We give an overview of the baseline detector system for SAFARI, the prime focal-plane instrument on board the proposed space infrared observatory, SPICA. SAFARI's detectors are based on superconducting Transition Edge Sensors (TES) to provide the extreme sensitivity (dark NEP≤2×10−19 W/Hz\le2\times10^{-19}\rm\ W/\sqrt Hz) needed to take advantage of SPICA's cold (<8 K) telescope. In order to read out the total of ~3500 detectors we use frequency domain multiplexing (FDM) with baseband feedback. In each multiplexing channel, a two-stage SQUID preamplifier reads out 160 detectors. We describe the detector system and discuss some of the considerations that informed its design.Comment: 7 pages, 3 figures, Proc. SPIE 10708, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, 107080K (9 July 2018); (fixed typo in abstract

    Experimental results from the ST7 mission on LISA Pathfinder

    Get PDF
    The Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload that operated from January 2016 through July 2017 on the European Space Agency’s (ESA) LISA Pathfinder spacecraft. The joint goal of the NASA and ESA missions was to validate key technologies for a future space-based gravitational wave observatory targeting the source-rich millihertz band. The two primary components of ST7-DRS are a micropropulsion system based on colloidal micro-Newton thrusters (CMNTs) and a control system that simultaneously controls the attitude and position of the spacecraft and the two free-flying test masses (TMs). This paper presents our main experimental results and summarizes the overall performance of the CMNTs and control laws. We find the CMNT performance to be consistent with preflight predictions, with a measured system thrust noise on the order of 100  nN/√Hz in the 1  mHz≤f≤30  mHz band. The control system maintained the TM-spacecraft separation with an RMS error of less than 2 nm and a noise spectral density of less than 3  nm/√Hz in the same band. Thruster calibration measurements yield thrust values consistent with the performance model and ground-based thrust-stand measurements, to within a few percent. We also report a differential acceleration noise between the two test masses with a spectral density of roughly 3  fm/s2/√Hz in the 1  mHz≤f≤30  mHz band, slightly less than twice as large as the best performance reported with the baseline LISA Pathfinder configuration and below the current requirements for the Laser Interferometer Space Antenna mission

    Tree Mortality following Thinning and Prescribed Burning in Central Oregon, U.S.

    No full text
    We examined causes and levels of tree mortality one year after thinning and prescribed burning was completed in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests at Pringle Falls Experimental Forest, Oregon, U.S. Four blocks of five experimental units (N = 20) were established. One of each of five treatments was assigned to each experimental unit in each block. Treatments included thinning from below to the upper management zone (UMZ) for the dominant plant association based on stand density index values for ponderosa pine followed by mastication and prescribed burning: (1) 50% UMZ (low density stand), (2) 75% UMZ (medium density stand), (3) 75% UMZ Gap, which involved a regeneration cut, (4) 100% UMZ (high density stand), and (5) an untreated control (high density stand). Experimental units were thinned in 2011 (block 4), 2012 (block 2), and 2013 (blocks 1 and 3); masticated within one year; and prescribed burned two years after thinning (2013&ndash;2015). A total of 395,053 trees was inventoried, of which 1.1% (4436) died. Significantly higher levels of tree mortality occurred on 100 UMZ (3.1%) than the untreated control (0.05%). Mortality was attributed to prescribed fire (2706), several species of bark beetles (Coleoptera: Curculionidae) (1592), unknown factors (136), windfall (1 tree), and western gall rust (1 tree). Among bark beetles, tree mortality was attributed to western pine beetle (Dendroctonus brevicomis LeConte) (881 trees), pine engraver (Ips pini (Say)) (385 trees), fir engraver (Scolytus ventralis LeConte) (304 trees), mountain pine beetle (D. ponderosae Hopkins) (20 trees), Ips emarginatus (LeConte) (1 tree), and Pityogenes spp. (1 tree)

    Tree Mortality following Thinning and Prescribed Burning in Central Oregon, U.S.

    No full text
    We examined causes and levels of tree mortality one year after thinning and prescribed burning was completed in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests at Pringle Falls Experimental Forest, Oregon, U.S. Four blocks of five experimental units (N = 20) were established. One of each of five treatments was assigned to each experimental unit in each block. Treatments included thinning from below to the upper management zone (UMZ) for the dominant plant association based on stand density index values for ponderosa pine followed by mastication and prescribed burning: (1) 50% UMZ (low density stand), (2) 75% UMZ (medium density stand), (3) 75% UMZ Gap, which involved a regeneration cut, (4) 100% UMZ (high density stand), and (5) an untreated control (high density stand). Experimental units were thinned in 2011 (block 4), 2012 (block 2), and 2013 (blocks 1 and 3); masticated within one year; and prescribed burned two years after thinning (2013–2015). A total of 395,053 trees was inventoried, of which 1.1% (4436) died. Significantly higher levels of tree mortality occurred on 100 UMZ (3.1%) than the untreated control (0.05%). Mortality was attributed to prescribed fire (2706), several species of bark beetles (Coleoptera: Curculionidae) (1592), unknown factors (136), windfall (1 tree), and western gall rust (1 tree). Among bark beetles, tree mortality was attributed to western pine beetle (Dendroctonus brevicomis LeConte) (881 trees), pine engraver (Ips pini (Say)) (385 trees), fir engraver (Scolytus ventralis LeConte) (304 trees), mountain pine beetle (D. ponderosae Hopkins) (20 trees), Ips emarginatus (LeConte) (1 tree), and Pityogenes spp. (1 tree)

    Performance of a low-noise test facility for the SAFARI TES bolometer arrays

    No full text
    We have constructed a test facility for characterizing the focal plane arrays of SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI’s three bolometer arrays are populated with extremely sensitive (NEP ? 2 × 10?19 W/? Hz) transition edge sensors with a transition temperature close to 100 mK. The extreme sensitivity and low saturation power (?4 fW) of SAFARI’s detectors present challenges to characterizing them. In optimizing the SAFARI Detector System Test Facility we have paid careful attention to stray-light exclusion as well as electrical, magnetic, and mechanical isolation.We present measurements verifying the facility’s performance and analyze them in terms of a two-fluid model of the TES current on the transition to investigate the background power level. We have measured a detector NEP of (5.1 ± 0.4) × 10?19 WHz?1/2, showing that the facility is ready to test the SAFARI prototype arrays and is approaching the performance needed for testing the flight arrays.Kavli Institute of NanoScienceApplied Science
    corecore