2,303 research outputs found

    Low-lying excitations of a trapped rotating Bose-Einstein condensate

    Full text link
    We investigate the low-lying excitations of a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit where the angular mometum LL of the system is much less than the number of the atoms NN in the trap. We show that in the asymptotic limit N→∞N \to \infty the excitation energy, measured from the energy of the lowest state, is given by 27N3(N3−1)v0/6827 N_{3}(N_{3}-1) v_0 /68, where N3N_{3} is the number of octupole excitations and v0v_{0} is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR

    Comment on Experiments Related to the Aharonov-Bohm Phase Shift

    Full text link
    Recent experiments undertaken by Caprez, Barwick, and Batelaan should clarify the connections between classical and quantum theories in connection with the Aharonov-Bohm phase shift. It is pointed out that resistive aspects for the solenoid current carriers play a role in the classical but not the quantum analysis for the phase shift. The observed absence of a classical lag effect for a macroscopic solenoid does not yet rule out the possibility of a lag explanation of the observed phase shift for a microscopic solenoid.Comment: 9 page

    Integral equation method for the electromagnetic wave propagation in stratified anisotropic dielectric-magnetic materials

    Full text link
    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.Comment: 14pages, 3figure

    Strings at the bottom of the deformed conifold

    Full text link
    We present solutions of the equations of motion of macroscopic F and D strings extending along the non compact 4D sections of the conifold geometry and winding around the internal directions. The effect of the Goldstone modes associated with the position of the strings on the internal manifold can be seen as a current on the string that prevents it from collapsing and allows the possibility of static 4D loops. Its relevance in recent models of brane inflation is discussed.Comment: 9+1 page

    Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model

    Full text link
    Practically, all chemotherapeutic agents lead to drug resistance. Clinically, it is a challenge to determine whether resistance arises prior to, or as a result of, cancer therapy. Further, a number of different intracellular and microenvironmental factors have been correlated with the emergence of drug resistance. With the goal of better understanding drug resistance and its connection with the tumor microenvironment, we have developed a hybrid discrete-continuous mathematical model. In this model, cancer cells described through a particle-spring approach respond to dynamically changing oxygen and DNA damaging drug concentrations described through partial differential equations. We thoroughly explored the behavior of our self-calibrated model under the following common conditions: a fixed layout of the vasculature, an identical initial configuration of cancer cells, the same mechanism of drug action, and one mechanism of cellular response to the drug. We considered one set of simulations in which drug resistance existed prior to the start of treatment, and another set in which drug resistance is acquired in response to treatment. This allows us to compare how both kinds of resistance influence the spatial and temporal dynamics of the developing tumor, and its clonal diversity. We show that both pre-existing and acquired resistance can give rise to three biologically distinct parameter regimes: successful tumor eradication, reduced effectiveness of drug during the course of treatment (resistance), and complete treatment failure

    Vortex nucleation in Bose-Einstein condensates in time-dependent traps

    Full text link
    Vortex nucleation in a Bose-Einstein condensate subject to a stirring potential is studied numerically using the zero-temperature, two-dimensional Gross-Pitaevskii equation. It is found that this theory is able to describe the creation of vortices, but not the crystallization of a vortex lattice. In the case of a rotating, slightly anisotropic harmonic potential, the numerical results reproduce experimental findings, thereby showing that finite temperatures are not necessary for vortex excitation below the quadrupole frequency. In the case of a condensate subject to stirring by a narrow rotating potential, the process of vortex excitation is described by a classical model that treats the multitude of vortices created by the stirrer as a continuously distributed vorticity at the center of the cloud, but retains a potential flow pattern at large distances from the center.Comment: 22 pages, 7 figures. Changes after referee report: one new figure, new refs. No conclusions altere

    Generating vortex rings in Bose-Einstein condensates in the line-source approximation

    Get PDF
    We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the rotational of the superfluid velocity field is different from zero only on a circumference of given radius located on a plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance of density profiles, the vortex core structure and the vortex nucleation energy, i.e., the energy difference between vortical and ground-state configurations. This is used to present a qualitative description of the vortex dynamics.Comment: Accepted for publication in Phys. Rev.

    FAST-DB: A novel solid-state approach for diffusion bonding dissimilar titanium alloy powders for next generation critical components

    Get PDF
    Titanium alloy components are subjected to challenging conditions in high performance applications, consisting of complex loads and thermal gradients. To improve the performance and efficiency of such components, it is desirable to introduce different microstructures into subcomponent regions which cannot be achieved by the conventional melt-wrought processing route. Instead, a solid-state consolidation route using dissimilar titanium alloy powders is proposed. In this study commercially pure Ti (CP-Ti), Ti-6Al-4V (Ti-6-4), and Ti-5Al-5Mo-5V-3Cr (Ti-5553) have been diffusion bonded using field assisted sintering technology (FAST) for dwell times of 10, 20, and 60 min. The effectiveness of FAST for diffusion bonding (DB) of dissimilar alloy powders has led to the authors terming this hybrid process as "FAST-DB". Excellent bond integrity was produced with no cracking, unbonded regions or voids in the dissimilar bond combinations, at all dwell times. Furthermore, reliable control and prediction of the bond characteristics and degree of elemental diffusion was demonstrated through commercial thermodynamic software. Elemental diffusion was characterised across the bonds and the chemical diffusion bond width increased linearly with dwell time. Peak hardness values occurred directly on the interface for Ti-5553 and CP-Ti bonds, whilst slightly into the Ti-6-4 alloy for the Ti-5553 and Ti-6-4 bonds, which can be attributed to fine scale alpha at the interface. In Ti-6-4 with CP-Ti bonds, a smooth transition was observed. Mechanical testing demonstrated that the FAST-DB interface had excellent structural integrity, with necking and fracture occurring in the lower strength alloy

    Role of Nucleotide Identity in Effective CRISPR Target Escape Mutations

    Get PDF
    Prokaryotes use primed CRISPR adaptation to update their memory bank of spacers against invading genetic elements that have escaped CRISPR interference through mutations in their protospacer target site. We previously observed a trend that nucleotide-dependent mismatches between crRNA and the protospacer strongly influence the efficiency of primed CRISPR adaptation. Here we show that guanine-substitutions in the target strand of the protospacer are highly detrimental to CRISPR interference and interference-dependent priming, while cytosine-substitutions are more readily tolerated. Furthermore, we show that this effect is based on strongly decreased binding affinity of the effector complex Cascade for guanine-mismatched targets, while cytosine-mismatched targets only minimally affect target DNA binding. Structural modeling of Cascade-bound targets with mismatches shows that steric clashes of mismatched guanines lead to unfavorable conformations of the RNA-DNA duplex. This effect has strong implications for the natural selection of target site mutations that lead to effective escape from type I CRISPR–Cas systems
    • …
    corecore