984 research outputs found

    Supporting students with Tourette syndrome in secondary school: a survey of staff views

    Get PDF
    Tourette syndrome is a neurological condition involving involuntary movements and sounds (tics) and is thought to affect as many as 1% of school-aged children. Some young people with Tourette syndrome experience educational difficulties and social difficulties. Current clinical guidelines suggest educators can play an important role in maximising learning potential and reducing the negative impact of this condition on students' social adjustment. Secondary school staff (N = 63) with responsibilities for special educational needs or disabilities completed a survey about support strategies for students with Tourette syndrome. Participants were first asked to suggest potentially helpful strategies and then rated how easily 17 recommended strategies could be implemented in school. The survey participants suggested a range of support strategies that were categorised as (1) promoting knowledge and understanding in school, (2) helping the student to cope with his/her tics, (3) supporting the student's learning and (4) providing social and emotional support. All the recommended support strategies were rated as being easy to implement (or already in place) by the majority of respondents (e.g., increasing staff awareness and regular communication with home). The strategies that were identified as being least easy to implement were those requiring extra staff input (support from teaching assistants and individual/small group working). Additional challenges to providing support were also identified by the participants (e.g., getting input from outside agencies)

    Perturbative spectrum of Trapped Weakly Interacting Bosons in Two Dimensions

    Full text link
    We study a trapped Bose-Einstein condensate under rotation in the limit of weak, translational and rotational invariant two-particle interactions. We use the perturbation-theory approach (the large-N expansion) to calculate the ground-state energy and the excitation spectrum in the asymptotic limit where the total number of particles N goes to infinity while keeping the total angular momentum L finite. Calculating the probabilities of different configurations of angular momentum in the exact eigenstates gives us a clear view of the physical content of excitations. We briefly discuss the case of repulsive contact interaction.Comment: Revtex, 10 pages, 1 table, to appear in Phys. Rev.

    Low-lying excitations of a trapped rotating Bose-Einstein condensate

    Full text link
    We investigate the low-lying excitations of a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit where the angular mometum LL of the system is much less than the number of the atoms NN in the trap. We show that in the asymptotic limit NN \to \infty the excitation energy, measured from the energy of the lowest state, is given by 27N3(N31)v0/6827 N_{3}(N_{3}-1) v_0 /68, where N3N_{3} is the number of octupole excitations and v0v_{0} is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR

    Bose-Einstein condensates with attractive interactions on a ring

    Full text link
    Considering an effectively attractive quasi-one-dimensional Bose-Einstein condensate of atoms confined in a toroidal trap, we find that the system undergoes a phase transition from a uniform to a localized state, as the magnitude of the coupling constant increases. Both the mean-field approximation, as well as a diagonalization scheme are used to attack the problem.Comment: 4 pages, 4 ps figures, RevTex, typographic errors correcte

    Finite temperature theory of the scissors mode in a Bose gas using the moment method

    Full text link
    We use a generalized Gross-Pitaevskii equation for the condensate and a semi-classical kinetic equation for the noncondensate atoms to discuss the scissors mode in a trapped Bose-condensed gas at finite temperatures. Both equations include the effect of C12C_{12} collisions between the condensate and noncondensate atoms. We solve the coupled moment equations describing oscillations of the quadrupole moments of the condensate and noncondensate components to find the collective mode frequencies and collisional damping rates as a function of temperature. Our calculations extend those of Gu\'ery-Odelin and Stringari at T=0 and in the normal phase. They complement the numerical results of Jackson and Zaremba, although Landau damping is left out of our approach. Our results are also used to calculate the quadrupole response function, which is related to the moment of inertia. It is shown explicitly that the moment of inertia of a trapped Bose gas at finite temperatures involves a sum of an irrotational component from the condensate and a rotational component from the thermal cloud atoms.Comment: 18 pages, 8 figure

    Integral-based filtering of continuous glucose sensor measurements for glycaemic control in critical care

    Get PDF
    Hyperglycaemia is prevalent in critical illness and increases the risk of further complications and mortality, while tight control can reduce mortality up to 43%. Adaptive control methods are capable of highly accurate, targeted blood glucose regulation using limited numbers of manual measurements due to patient discomfort and labour intensity. Therefore, the option to obtain greater data density using emerging continuous glucose sensing devices is attractive. However, the few such systems currently available can have errors in excess of 20-30%. In contrast, typical bedside testing kits have errors of approximately 7-10%. Despite greater measurement frequency larger errors significantly impact the resulting glucose and patient specific parameter estimates, and thus the control actions determined creating an important safety and performance issue. This paper models the impact of the Continuous Glucose Monitoring System (CGMS, Medtronic, Northridge, CA) on model-based parameter identification and glucose prediction. An integral-based fitting and filtering method is developed to reduce the effect of these errors. A noise model is developed based on CGMS data reported in the literature, and is slightly conservative with a mean Clarke Error Grid (CEG) correlation of R=0.81 (range: 0.68-0.88) as compared to a reported value of R=0.82 in a critical care study. Using 17 virtual patient profiles developed from retrospective clinical data, this noise model was used to test the methods developed. Monte-Carlo simulation for each patient resulted in an average absolute one-hour glucose prediction error of 6.20% (range: 4.97-8.06%) with an average standard deviation per patient of 5.22% (range: 3.26-8.55%). Note that all the methods and results are generalisable to similar applications outside of critical care, such as less acute wards and eventually ambulatory individuals. Clinically, the results show one possible computational method for managing the larger errors encountered in emerging continuous blood glucose sensors, thus enabling their more effective use in clinical glucose regulation studies

    Operator-Algebraic Approach to the Yrast Spectrum of Weakly Interacting Trapped Bosons

    Full text link
    We present an operator-algebraic approach to deriving the low-lying quasi-degenerate spectrum of weakly interacting trapped N bosons with total angular momentum \hbar L for the case of small L/N, demonstrating that the lowest-lying excitation spectrum is given by 27 g n_3(n_3-1)/34, where g is the strength of the repulsive contact interaction and n_3 the number of excited octupole quanta. Our method provides constraints for these quasi-degenerate many-body states and gives higher excitation energies that depend linearly on N.Comment: 7 pages, one figur

    Persistent currents in a Bose-Einstein condensate in the presence of disorder

    Full text link
    We examine bosonic atoms that are confined in a toroidal, quasi-one-dimensional trap, subjected to a random potential. The resulting inhomogeneous atomic density is smoothened for sufficiently strong, repulsive interatomic interactions. Statistical analysis of our simulations show that the gas supports persistent currents, which become more fragile due to the disorder.Comment: 5 pages, RevTex, 3 figures, revised version, to appear in JLT

    Multilateral inversion of A_r, C_r and D_r basic hypergeometric series

    Full text link
    In [Electron. J. Combin. 10 (2003), #R10], the author presented a new basic hypergeometric matrix inverse with applications to bilateral basic hypergeometric series. This matrix inversion result was directly extracted from an instance of Bailey's very-well-poised 6-psi-6 summation theorem, and involves two infinite matrices which are not lower-triangular. The present paper features three different multivariable generalizations of the above result. These are extracted from Gustafson's A_r and C_r extensions and of the author's recent A_r extension of Bailey's 6-psi-6 summation formula. By combining these new multidimensional matrix inverses with A_r and D_r extensions of Jackson's 8-phi-7 summation theorem three balanced very-well-poised 8-psi-8 summation theorems associated with the root systems A_r and C_r are derived.Comment: 24 page
    corecore