745 research outputs found

    A portrait of cadmium

    Get PDF

    Amoxicillin duration and dose for community-acquired pneumonia in children: the CAP-IT factorial non-inferiority RCT.

    Get PDF
    BACKGROUND: Data are limited regarding the optimal dose and duration of amoxicillin treatment for community-acquired pneumonia in children. OBJECTIVES: To determine the efficacy, safety and impact on antimicrobial resistance of shorter (3-day) and longer (7-day) treatment with amoxicillin at both a lower and a higher dose at hospital discharge in children with uncomplicated community-acquired pneumonia. DESIGN: A multicentre randomised double-blind 2 × 2 factorial non-inferiority trial in secondary care in the UK and Ireland. SETTING: Paediatric emergency departments, paediatric assessment/observation units and inpatient wards. PARTICIPANTS: Children aged > 6 months, weighing 6-24 kg, with a clinical diagnosis of community-acquired pneumonia, in whom treatment with amoxicillin as the sole antibiotic was planned on discharge. INTERVENTIONS: Oral amoxicillin syrup at a dose of 35-50 mg/kg/day compared with a dose of 70-90 mg/kg/day, and 3 compared with 7 days' duration. Children were randomised simultaneously to each of the two factorial arms in a 1 : 1 ratio. MAIN OUTCOME MEASURES: The primary outcome was clinically indicated systemic antibacterial treatment prescribed for respiratory tract infection (including community-acquired pneumonia), other than trial medication, up to 28 days after randomisation. Secondary outcomes included severity and duration of parent/guardian-reported community-acquired pneumonia symptoms, drug-related adverse events (including thrush, skin rashes and diarrhoea), antimicrobial resistance and adherence to trial medication. RESULTS: A total of 824 children were recruited from 29 hospitals. Ten participants received no trial medication and were excluded. Participants [median age 2.5 (interquartile range 1.6-2.7) years; 52% male] were randomised to either 3 (n = 413) or 7 days (n = 401) of trial medication at either lower (n = 410) or higher (n = 404) doses. There were 51 (12.5%) and 49 (12.5%) primary end points in the 3- and 7-day arms, respectively (difference 0.1%, 90% confidence interval -3.8% to 3.9%) and 51 (12.6%) and 49 (12.4%) primary end points in the low- and high-dose arms, respectively (difference 0.2%, 90% confidence interval -3.7% to 4.0%), both demonstrating non-inferiority. Resolution of cough was faster in the 7-day arm than in the 3-day arm for cough (10 days vs. 12 days) (p = 0.040), with no difference in time to resolution of other symptoms. The type and frequency of adverse events and rate of colonisation by penicillin-non-susceptible pneumococci were comparable between arms. LIMITATIONS: End-of-treatment swabs were not taken, and 28-day swabs were collected in only 53% of children. We focused on phenotypic penicillin resistance testing in pneumococci in the nasopharynx, which does not describe the global impact on the microflora. Although 21% of children did not attend the final 28-day visit, we obtained data from general practitioners for the primary end point on all but 3% of children. CONCLUSIONS: Antibiotic retreatment, adverse events and nasopharyngeal colonisation by penicillin-non-susceptible pneumococci were similar with the higher and lower amoxicillin doses and the 3- and 7-day treatments. Time to resolution of cough and sleep disturbance was slightly longer in children taking 3 days' amoxicillin, but time to resolution of all other symptoms was similar in both arms. FUTURE WORK: Antimicrobial resistance genotypic studies are ongoing, including whole-genome sequencing and shotgun metagenomics, to fully characterise the effect of amoxicillin dose and duration on antimicrobial resistance. The analysis of a randomised substudy comparing parental electronic and paper diary entry is also ongoing. TRIAL REGISTRATION: Current Controlled Trials ISRCTN76888927, EudraCT 2016-000809-36 and CTA 00316/0246/001-0006. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 60. See the NIHR Journals Library website for further project information

    Anthropometric Variables Accurately Predict Dual Energy X-Ray Absorptiometric-Derived Body Composition and Can Be Used to Screen for Diabetes

    Get PDF
    The current world-wide epidemic of obesity has stimulated interest in developing simple screening methods to identify individuals with undiagnosed diabetes mellitus type 2 (DM2) or metabolic syndrome (MS). Prior work utilizing body composition obtained by sophisticated technology has shown that the ratio of abdominal fat to total fat is a good predictor for DM2 or MS. The goals of this study were to determine how well simple anthropometric variables predict the fat mass distribution as determined by dual energy x-ray absorptometry (DXA), and whether these are useful to screen for DM2 or MS within a population. To accomplish this, the body composition of 341 females spanning a wide range of body mass indices and with a 23% prevalence of DM2 and MS was determined using DXA. Stepwise linear regression models incorporating age, weight, height, waistline, and hipline predicted DXA body composition (i.e., fat mass, trunk fat, fat free mass, and total mass) with good accuracy. Using body composition as independent variables, nominal logistic regression was then performed to estimate the probability of DM2. The results show good discrimination with the receiver operating characteristic (ROC) having an area under the curve (AUC) of 0.78. The anthropometrically-derived body composition equations derived from the full DXA study group were then applied to a group of 1153 female patients selected from a general endocrinology practice. Similar to the smaller study group, the ROC from logistical regression using body composition had an AUC of 0.81 for the detection of DM2. These results are superior to screening based on questionnaires and compare favorably with published data derived from invasive testing, e.g., hemoglobin A1c. This anthropometric approach offers promise for the development of simple, inexpensive, non-invasive screening to identify individuals with metabolic dysfunction within large populations

    Individual Predisposition, Household Clustering and Risk Factors for Human Infection with Ascaris lumbricoides: New Epidemiological Insights

    Get PDF
    Numerous analyses have found that people infected with roundworm (Ascaris lumbricoides) are predisposed to harbor either many or few worms. Members of the same household also tend to harbor similar numbers of worms. These phenomena are called individual predisposition and household clustering respectively. In this article, we use Bayesian methods to fit a statistical model to worm count data collected from a cohort of participants at baseline and after two rounds of re-infection following curative treatment. We show that individual predisposition is extremely weak once the clustering effect of the household has been accounted for. This suggests that predisposition is of limited importance to the epidemiology of roundworm infection. Further, we show that over half of the variability in average worm counts among households is explained by household risk factors. This implies that exposures to infectious roundworm eggs shared by household members are important determinants of household clustering. We argue that these results support the hypothesis proposed in the literature that the household is a key focus of roundworm transmission

    Patterns of soil-transmitted helminth infection and impact of four-monthly albendazole treatments in preschool children from semi-urban communities in Nigeria: a double-blind placebo-controlled randomised trial

    Get PDF
    Background Children aged between one and five years are particularly vulnerable to disease caused by soil-transmitted helminths (STH). Periodic deworming has been shown to improve growth, micronutrient status (iron and vitamin A), and motor and language development in preschool children and justifies the inclusion of this age group in deworming programmes. Our objectives were to describe the prevalence and intensity of STH infection and to investigate the effectiveness of repeated four-monthly albendazole treatments on STH infection in children aged one to four years. Methods The study was carried out in four semi-urban villages situated near Ile-Ife, Osun State, Nigeria. The study was a double-blind placebo-controlled randomised trial. Children aged one to four years were randomly assigned to receive either albendazole or placebo every four months for 12 months with a follow-up at 14 months. Results The results presented here revealed that 50% of the preschool children in these semi-urban communities were infected by one or more helminths, the most prevalent STH being Ascaris lumbricoides (47.6%). Our study demonstrated that repeated four-monthly anthelminthic treatments with albendazole were successful in reducing prevalence and intensity of A. lumbricoides infections. At the end of the follow-up period, 12% and 43% of the children were infected with A. lumbricoides and mean epg was 117 (S.E. 50) and 1740 (S.E. 291) in the treatment and placebo groups respectively compared to 45% and 45% of the children being infected with Ascaris and mean epg being 1095 (S.E. 237) and 1126 (S.E. 182) in the treatment and placebo group respectively at baseline. Conclusion Results from this study show that the moderate prevalence and low intensity of STH infection in these preschool children necessitates systematic treatment of the children in child health programmes

    Amoxicillin duration and dose for community-acquired pneumonia in children: the CAP-IT factorial non-inferiority RCT.

    Get PDF
    BACKGROUND: Data are limited regarding the optimal dose and duration of amoxicillin treatment for community-acquired pneumonia in children. OBJECTIVES: To determine the efficacy, safety and impact on antimicrobial resistance of shorter (3-day) and longer (7-day) treatment with amoxicillin at both a lower and a higher dose at hospital discharge in children with uncomplicated community-acquired pneumonia. DESIGN: A multicentre randomised double-blind 2 × 2 factorial non-inferiority trial in secondary care in the UK and Ireland. SETTING: Paediatric emergency departments, paediatric assessment/observation units and inpatient wards. PARTICIPANTS: Children aged > 6 months, weighing 6-24 kg, with a clinical diagnosis of community-acquired pneumonia, in whom treatment with amoxicillin as the sole antibiotic was planned on discharge. INTERVENTIONS: Oral amoxicillin syrup at a dose of 35-50 mg/kg/day compared with a dose of 70-90 mg/kg/day, and 3 compared with 7 days' duration. Children were randomised simultaneously to each of the two factorial arms in a 1 : 1 ratio. MAIN OUTCOME MEASURES: The primary outcome was clinically indicated systemic antibacterial treatment prescribed for respiratory tract infection (including community-acquired pneumonia), other than trial medication, up to 28 days after randomisation. Secondary outcomes included severity and duration of parent/guardian-reported community-acquired pneumonia symptoms, drug-related adverse events (including thrush, skin rashes and diarrhoea), antimicrobial resistance and adherence to trial medication. RESULTS: A total of 824 children were recruited from 29 hospitals. Ten participants received no trial medication and were excluded. Participants [median age 2.5 (interquartile range 1.6-2.7) years; 52% male] were randomised to either 3 (n = 413) or 7 days (n = 401) of trial medication at either lower (n = 410) or higher (n = 404) doses. There were 51 (12.5%) and 49 (12.5%) primary end points in the 3- and 7-day arms, respectively (difference 0.1%, 90% confidence interval -3.8% to 3.9%) and 51 (12.6%) and 49 (12.4%) primary end points in the low- and high-dose arms, respectively (difference 0.2%, 90% confidence interval -3.7% to 4.0%), both demonstrating non-inferiority. Resolution of cough was faster in the 7-day arm than in the 3-day arm for cough (10 days vs. 12 days) (p = 0.040), with no difference in time to resolution of other symptoms. The type and frequency of adverse events and rate of colonisation by penicillin-non-susceptible pneumococci were comparable between arms. LIMITATIONS: End-of-treatment swabs were not taken, and 28-day swabs were collected in only 53% of children. We focused on phenotypic penicillin resistance testing in pneumococci in the nasopharynx, which does not describe the global impact on the microflora. Although 21% of children did not attend the final 28-day visit, we obtained data from general practitioners for the primary end point on all but 3% of children. CONCLUSIONS: Antibiotic retreatment, adverse events and nasopharyngeal colonisation by penicillin-non-susceptible pneumococci were similar with the higher and lower amoxicillin doses and the 3- and 7-day treatments. Time to resolution of cough and sleep disturbance was slightly longer in children taking 3 days' amoxicillin, but time to resolution of all other symptoms was similar in both arms. FUTURE WORK: Antimicrobial resistance genotypic studies are ongoing, including whole-genome sequencing and shotgun metagenomics, to fully characterise the effect of amoxicillin dose and duration on antimicrobial resistance. The analysis of a randomised substudy comparing parental electronic and paper diary entry is also ongoing. TRIAL REGISTRATION: Current Controlled Trials ISRCTN76888927, EudraCT 2016-000809-36 and CTA 00316/0246/001-0006. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 60. See the NIHR Journals Library website for further project information
    • …
    corecore