3,112 research outputs found
Tidal Evolution of Close-in Extra-Solar Planets
The distribution of eccentricities e of extra-solar planets with semi-major
axes a > 0.2 AU is very uniform, and values for e are relatively large,
averaging 0.3 and broadly distributed up to near 1. For a < 0.2 AU,
eccentricities are much smaller (most e < 0.2), a characteristic widely
attributed to damping by tides after the planets formed and the protoplanetary
gas disk dissipated. Most previous estimates of the tidal damping considered
the tides raised on the planets, but ignored the tides raised on the stars.
Most also assumed specific values for the planets' poorly constrained tidal
dissipation parameter Qp. Perhaps most important, in many studies, the strongly
coupled evolution between e and a was ignored. We have now integrated the
coupled tidal evolution equations for e and a over the estimated age of each
planet, and confirmed that the distribution of initial e values of close-in
planets matches that of the general population for reasonable Q values, with
the best fits for stellar and planetary Q being ~10^5.5 and ~10^6.5,
respectively. The accompanying evolution of a values shows most close-in
planets had significantly larger a at the start of tidal migration. The earlier
gas disk migration did not bring all planets to their current orbits. The
current small values of a were only reached gradually due to tides over the
lifetimes of the planets. These results may have important implications for
planet formation models, atmospheric models of "hot Jupiters", and the success
of transit surveys.Comment: accepted to Ap
Tides and the Evolution of Planetary Habitability
Tides raised on a planet by its host star's gravity can reduce a planet's
orbital semi-major axis and eccentricity. This effect is only relevant for
planets orbiting very close to their host stars. The habitable zones of
low-mass stars are also close-in and tides can alter the orbits of planets in
these locations. We calculate the tidal evolution of hypothetical terrestrial
planets around low-mass stars and show that tides can evolve planets past the
inner edge of the habitable zone, sometimes in less than 1 billion years. This
migration requires large eccentricities (>0.5) and low-mass stars (<0.35
M_Sun). Such migration may have important implications for the evolution of the
atmosphere, internal heating and the Gaia hypothesis. Similarly, a planet
detected interior to the habitable zone could have been habitable in the past.
We consider the past habitability of the recently-discovered, ~5 M_Earth
planet, Gliese 581 c. We find that it could have been habitable for reasonable
choices of orbital and physical properties as recently as 2 Gyr ago. However,
when we include constraints derived from the additional companions, we see that
most parameter choices that predict past habitability require the two inner
planets of the system to have crossed their mutual 3:1 mean motion resonance.
As this crossing would likely have resulted in resonance capture, which is not
observed, we conclude that Gl 581 c was probably never habitable.Comment: 31 pages, 10 figures, accepted to Astrobiology. A version with full
resolution figures is available at
http://www.lpl.arizona.edu/~rory/publications/brjg07.pd
Cyclic GMP Dependent Protein Kinase (PKG) as a mediator of EGFR-Induced Apoptosis in Breast Cancer
The impact of biofilms upon surfaces relevant to an intermediate level radioactive waste geological disposal facility under simulated near field conditions.
The ability of biofilms to form on a range of materials (cementious backfill (Nirex Reference Vault Backfill (NRVB)), graphite and stainless steel) relevant to potential UK intermediate level radioactive waste (ILW) disposal concepts was investigated by exposing these surfaces to alkaliphilic flocs generated by mature biofilm communities. Flocs are aggregates of biofilm material that are able to act as a transport vector for the propagation of biofilms.. In systems where biofilm formation was observed there was also a decrease in the sorption of isosaccharinic acids to the NRVB. The biofilms were composed of cells, extracellular DNA (eDNA), proteins and lipids with a smaller polysaccharide fraction, which was biased towards mannopyranosyl linked carbohydrates. The same trend was seen with the graphite and stainless steel surfaces at these pH values, but in this case the biofilms associated with the stainless steel surfaces had a distinct eDNA basal layer that anchored the biofilm to the surface. At pH 13 no structured biofilm was observed, rather all the surfaces accumulated an indistinct organic layer composed of biofilm materials. This was particularly the case for the stainless steel coupons which accumulated relatively large quantities of eDNA. The results demonstrate that there is the potential for biofilm formation in an ILW-GDF provided an initiation source for the microbial biofilm is present. They also suggest that even when conditions are too harsh for biofilm formation, exposed surfaces may accumulate organic material such as eDNA
A Search for Exozodiacal Clouds with Kepler
Planets embedded within dust disks may drive the formation of large scale
clumpy dust structures by trapping dust into resonant orbits. Detection and
subsequent modeling of the dust structures would help constrain the mass and
orbit of the planet and the disk architecture, give clues to the history of the
planetary system, and provide a statistical estimate of disk asymmetry for
future exoEarth-imaging missions. Here we present the first search for these
resonant structures in the inner regions of planetary systems by analyzing the
light curves of hot Jupiter planetary candidates identified by the Kepler
mission. We detect only one candidate disk structure associated with KOI 838.01
at the 3-sigma confidence level, but subsequent radial velocity measurements
reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk
structure is a false positive. Using our null result, we place an upper limit
on the frequency of dense exozodi structures created by hot Jupiters. We find
that at the 90% confidence level, less than 21% of Kepler hot Jupiters create
resonant dust clumps that lead and trail the planet by ~90 degrees with optical
depths >~5*10^-6, which corresponds to the resonant structure expected for a
lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as
the zodiacal cloud.Comment: 22 pages, 6 figures, Accepted for publication in Ap
Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants
This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and this must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils
Extrasolar Planet Transits Observed at Kitt Peak National Observatory
We obtained J-, H- and JH-band photometry of known extrasolar planet
transiting systems at the 2.1-m Kitt Peak National Observatory Telescope using
the FLAMINGOS infrared camera between October 2008 and October 2011. From the
derived lightcurves we have extracted the mid-transit times, transit depths and
transit durations for these events. The precise mid-transit times obtained help
improve the orbital periods and also constrain transit-time variations of the
systems. For most cases the published system parameters successfully accounted
for our observed lightcurves, but in some instances we derive improved
planetary radii and orbital periods. We complemented our 2.1-m infrared
observations using CCD z'-band and B-band photometry (plus two Hydrogen Alpha
filter observations) obtained with the Kitt Peak Visitor's Center telescope,
and with four H-band transits observed in October 2007 with the NSO's 1.6-m
McMath-Pierce Solar Telescope. The principal highlights of our results are: 1)
our ensemble of J-band planetary radii agree with optical radii, with the
best-fit relation being: (Rp/R*)J = 0.0017 + 0.979 (Rp/R*)optical, 2) We
observe star spot crossings during the transit of WASP-11/HAT-P-10, 3) we
detect star spot crossings by HAT-P-11b (Kepler-3b), thus confirming that the
magnetic evolution of the stellar active regions can be monitored even after
the Kepler mission has ended, and 4) we confirm a grazing transit for
HAT-P-27/WASP-40. In total we present 57 individual transits of 32 known
exoplanet systems.Comment: 33 pages, 6 figures, accepted in Publications of the Astronomical
Society of the Pacifi
Radio Observations of the Hubble Deep Field South region: I. Survey Description and Initial Results
This paper is the first of a series describing the results of the Australia
Telescope Hubble Deep Field South (ATHDFS) radio survey. The survey was
conducted at four wavelengths - 20, 11, 6, and 3 cm, over a 4-year period, and
achieves an rms sensitivity of about 10 microJy at each wavelength. We describe
the observations and data reduction processes, and present data on radio
sources close to the centre of the HDF-S. We discuss in detail the properties
of a subset of these sources. The sources include both starburst galaxies and
galaxies powered by an active galactic nucleus, and range in redshift from 0.1
to 2.2. Some of them are characterised by unusually high radio-to-optical
luminosities, presumably caused by dust extinction.Comment: Accepted by AJ. 32 pages, 4 tables, 3 figures. PDF with
full-resolution figures is on
http://www.atnf.csiro.au/people/rnorris/N197.pd
Classical 5D fields generated by a uniformly accelerated point source
Gauge fields associated with the manifestly covariant dynamics of particles
in spacetime are five-dimensional. In this paper we explore the old
problem of fields generated by a source undergoing hyperbolic motion in this
framework. The 5D fields are computed numerically using absolute time
-retarded Green-functions, and qualitatively compared with Maxwell fields
generated by the same motion. We find that although the zero mode of all fields
coincides with the corresponding Maxwell problem, the non-zero mode should
affect, through the Lorentz force, the observed motion of test particles.Comment: 36 pages, 8 figure
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
- …
