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Abstract: This review is on arsenic in agronomic systems, and covers 

processes that influence the entry of arsenic into the human food supply. 

The scope is from sources of arsenic (natural and anthropogenic) in 

soils, biogeochemical and rhizosphere processes that control arsenic 

speciation and availability, through to mechanisms of uptake by crop 

plants and potential mitigation strategies. This review makes a case for 

taking steps to prevent or limit crop uptake of arsenic, wherever 

possible, and to work toward a long-term solution to the presence of 

arsenic in agronomic systems. The past two decades have seen important 

advances in our understanding of how biogeochemical and physiological 

processes influence human exposure to soil arsenic, and this must now 

prompt an informed reconsideration and unification of regulations to 

protect the quality of agricultural and residential soils 

 

Response to Reviewers: Response to Reviewers 

 

We thank both reviewers for taking the time to give our paper a rigorous 

and thoughtful peer review, and for ultimately improving the quality of 

the writing and the information. We include our responses to their 

comments below.  

 

Reviewer 1 Comment 1 (R1C1): Page 3 L15-18: This sentence is a bit 

misleading.  Importantly, As uptake by rice readily occurs in non-

contaminated soils because naturally present As is liberated and plant 

available under reducing soil conditions.  The sentence as written 

suggests that As uptake into rice is due to contamination.   

 

Response to R1C1: We agree; this is an important point. To make it 

clearer that arsenic contamination of soil is not necessarily a pre-

requisite for its entry into food crops, we have added after L15-18: “The 

presence of elevated concentrations of arsenic in the soil is not a pre-

requisite in dietary arsenic exposure as seen in the effective 

accumulation of arsenic by rice grown in uncontaminated soils.”  

 



R1C2: In addition, I would argue that "in many cases" the route of As 

exposure via food is not more significant than drinking water.  In the 

US, As ingestion via food is a primary route of exposure because most 

drinking water in the US has low As.  However, in other more populated 

regions (e.g. S and SE Asia) drinking water is the primary route of 

exposure and ingestion via food is secondary. 

 

Response to R1C2: We agree: this generalization is a US-centric view. In 

place of “In many cases”, we have specified that “When drinking-water 

arsenic concentrations are low, dietary arsenic can be a significant 

exposure route.”  

 

R1C3: Page 4 L6 and L8 and elsewhere: Is the use of in text URLs suitable 

for STODEN? Please check. I suggest to cite them in the references 

instead. 

 

Response to R1C3: Agreed. We have replaced full URLs with citations and 

moved them to the bibliography. 

 

R1C4: Page 5 L8: It is not clear what the 2.1 mg/kg level is for in 

Florida.  Is that agricultural soils? 

 

Response to R1C4: We have added the missing information. The sentence now 

reads, “for instance, New Jersey has a cleanup criterion of 20 mg/kg and 

Florida has a cleanup target of 2.1 mg/kg for residential and 12 mg/kg 

for industrial sites.”  

 

R1C5:Page 5 L22-23: This is generally true up to a point, but after a 

threshold is reached As levels in plants may decrease with increasing As 

in soil or water because As begins to impose plant toxicity, which 

affects uptake of solutes including As.  See, e.g. 

⇒       Panaullah, G. M.; Alam, T.; Hossain, M. B.; Loeppert, R. H.; 
Lauren, J. G.; Meisner, C. A.; Ahmed, Z. U.; Duxbury, J. M., Arsenic 

toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil 2009, 

317, (1-2), 31-39. 

⇒       Syu, C. H.; Huang, C. C.; Jiang, P. Y.; Lee, C. H.; Lee, D. Y., 
Arsenic accumulation and speciation in rice grains influenced by arsenic 

phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. 

Journal of Hazardous Materials 2015, 286, 179-186. 

 

Response to R1C5: We have changed this statement to read, “Below toxic 

concentrations, the higher the total soil arsenic concentration (the sum 

of all arsenic species, regardless of bioavailability) the higher the 

crop uptake of arsenic, including….” and have added the Panaulla and Syu 

references suggested by Reviewer 1.  

 

R1C6: Page 6 L13: Suggest to change to "most soils range < 7.5 - 20 mg/kg 

arsenic" for clarity 

 

Response to R1C6: Done.  

 

R1C7: Page 11 L11 and elsewhere: Are edible plant tissue concentrations 

reported in mg/kg on a fresh weight or dry weight basis?  This should be 

clearly stated to avoid confusion.  I assume dry weight, but many of the 

market basket surveys (especially the FDA total diet study) report on 

fresh weight.  Plants are generally 90% water, so this detail is 

important when comparing concentrations. 

 



Response to R1C7: Done. This has been stated clearly at first mention.  

 

R1C8: Page 12 L3: There is a hyperlink for "130 million tons" which 

should instead be removed and referenced. 

 

Response to R1C8: Done.  

 

R1C9: Page 12 L7: change "since" to "because" 

 

Response to R1C9: Done 

 

R1C10: Page 13 L13: Please define DMA and MMA.  Not all STODEN readers 

will know what those compounds are. 

 

Response to R1C10: Done 

 

R1C11: Page 14 L8-15: It should be considered that the microbial 

communities also differ, and that microbes are known to methylate 

inorganic As as a detoxification mechanism.  DMA and inorganic As differ 

in their in planta mobility, which is likely a contributing factor in 

enhanced total As (as DMA) in US vs Bangladeshi rice. 

 

Response to R1C11: To our knowledge there are no comparative studies on 

the soil microbial communities between (for instance) the USA and 

Bangladesh that would support this statement, although it is a well-

informed hypothesis. We are wary – particularly on what seems to have 

been a contentious issue – of hypothesizing about why USA rice contains 

more arsenic, or why the arsenic speciation differs. We have stated 

however, in response to this comment, what factors may be involved and 

what the uncertainties are, which will hopefully embrace the comment of 

Reviewer 1. We have also referenced the statement that plants themselves 

cannot methylate arsenic. This paragraph now reads: 

“Former pesticide application has been suggested be a factor in the 

presence of higher levels of total arsenic found in rice grown in the 

south-central regions of the USA65, 66 compared to other areas of the USA 

and to other countries, such as Bangladesh67. Evidence on varietal 

differences in arsenic uptake, speciation and distribution within rice 

grain (See also Section 6) strongly suggest that soil arsenic 

concentration is not the sole, nor particularly the main driver of this 

phenomenon.  Other factors likely to be influential include the 

differences in the soil microbial community composition between 

geographical regions that affect arsenic methylation, which – considering 

that the ability to methylate arsenic has not been found in plants – may 

be another driving factor.” 

 

R1C12: Page 15 L1-3: It is not clear if the Florida study was from the 

reference 68?  If not, please provide the reference. 

 

Response to R1C12: Done.  

 

R1C13: Page 17 L16: silicate/silicic acid should also be mentioned 

because it competitively desorbs arsenite.  See, eg. Luxton TP, Tadanier 

CJ, Eick MJ. Mobilization of arsenite by competitive interaction with 

silicic acid. Soil Sci Soc Am J. 2006;70:204-214. 

 

Response to R1C13: Done.  

 



R1C14: Page 19 L5: What is the reference for the "animal waste products" 

part of the sentence? 

 

Response to R1C14: Citation has been added.  

 

R1C15: Page 20 L17-19: This sentence is a bit misleading.  All plants 

tend to acidify the rhizosphere due to cation uptake and charge balance 

by releasing protons to the rhizosphere.  In other words, iron uptake by 

non-grasses is not the only mechanism that results in an acidified pH; 

those processes (e.g. cation uptake) are universal in all higher plants. 

 

Response to R1C15: Sentence now reads “Rhizosphere acidification occurs 

in all plant species during cation uptake and charge balance, when 

protons are released into the rhizosphere”. 

 

R1C16: Page 20 L22: for the non-expert, I suggest to explicitly state why 

high OC in the rhizosphere enhances As solubility (i.e. drives 

microbially-mediated reductive dissolution). 

 

Response to R1C16: We have added “by stimulating microbially-mediated 

reductive dissolution of soil minerals” 

 

R1C17: Page 21 L4: It should be "anaerobic" not "aerobic" when discussing 

submerged rice plants. 

 

Response to R1C17: Done. 

 

R1C18: Page 26 L12-L14.  Clear evidence has shown that LSi 1 and 2 

transporters are responsible for arsenite uptake into rice roots.  These 

transporters are located on the two casparian strips on the exodermis and 

the endodermis.  Note that no transporter is needed to move the neutral 

arsenous acid (i.e. arsenite) molecule to the casparian strip, as this 

can be done apoplastically. 

 

Response to R1C18: Thank you. This statement has been deleted, and the 

statement “In rice, Low Silicon 1 (OsLsi1) and OsLsi2 are silicic acid 

transporters and arsenite, MMAV, and DMAV are among their unintended 

targets148, 149.” has been moved up and the paragraph edited accordingly.  

 

R1C19: Page 27 L17-18:  The way it is written, it sounds like DMA and MMA 

start to flow backward "reversed"…I believe what was intended from this 

sentence is something like "While the inorganic forms are more readily 

taken up from soil than organic forms, the organic forms are more readily 

transported to shoots because…".   

 

Response to R1C19: This statement now reads, “Despite having a lower 

affinity for transporters into the plant than inorganic forms, organic 

arsenic species are more efficiently transported toward the shoot than 

inorganic forms.”  

 

R1C20: Also, there was no earlier mention of the relative differences 

between inorganic and organic As for uptake.  Consider revising. 

Response to R1C20: Statements about the relative differences in uptake of 

arsenic species are included in two statements in Section 6.2: “In 

magnitude, plants take up arsenicals from the soil in the order arsenite 

> arsenate > DMA > MMA” and “The arsenic uptake specificity of OsLsi1 is 

arsenite >> MMA > DMA”.  

 



R1C21: Page 31 L7-19: It should also be mentioned that increased 

exogenous Si can down-regulated the Lsi1 transporter, which further 

decreases the potential for As uptake. 

 

Response to R1C21: Added. Thank you.  

 

R1C22: Page 31 L18-19.  Suggest to change to "…practice for smallholder 

farmers), can provide silicon without increasing methane production and 

decreases either total or inorganic As in grain." 

 

Response to R1C22: Added. 

 

Reviewer 2: 

Reviewer 2 Comment 1 (R2C1): As the authors discuss the regulated limits 

of arsenic in rice, I would have thought a section relating these 

exposures to arsenic to health impacts was needed. Some indication from 

the scientific literature on the impacts that arsenic rich water and food 

has on human health is needed, especially in relation to the 

concentrations given as the regulated limits. 

 

Response to R2C1: This is a great comment. The reviewer refers to 

exposure epidemiological studies of arsenic, which is a huge area of 

science that is outside the scope of this synthesis paper. This topic is 

the subject of another excellent article submitted to this special issue. 

We have added a statement referring the reader to that article at the end 

of the first paragraph of the introduction:  

“An in-depth review of the current findings on the relationship between 

dietary arsenic exposure and human health is provided by Davis et al. 

(this issue)..” 

 

R2C2: Page 4 line 2. "but no safe level of arsenic has been found" what 

do the authors mean by this statement? The next sentence discusses 

impacts of arsenic in compared to MCLs, but does not go as far as saying 

that any concentrations are harmful. 

 

Response to R2C2: We agree that the statement “no safe level of arsenic 

has been found”, suggests that any arsenic level causes actual harm, when 

in fact observations are that any level causes an effect on biological 

model systems, such as cell lines. We recognize that this is an important 

distinction. This statement has been deleted. We have clarified the 

message here and the statement now reads:  

“but given that measurable biological effects occur in at levels below 

the current maximum contaminant level (MCL) for arsenic in drinking 

water2, these low levels can still translate into significant exposures, 

particularly in children and presumably in adults who consume a lot of 

rice.”  

 

R2C3: Page 4 line 18. "the majority of other nations", some clarification 

needed on this statement as the statement above this indicates that the 

10ug/l is supported by WHO, EU and Canada. Does that mean that all other 

nations except those in the EU, Canada and the couple of other mentioned 

nations have a limit of 50 ug/l? 

 

Response to R2C3: We have named the countries that still adopt a standard 

of 50 µg/L, and included a citation.  

 

R2C4: Page 5 line 2. Reference needed for this statement. 

 



Response to R2C4: Done. 

 

R2C5: Page 6 line 21. "USGS" I think this is the first use of this 

abbreviation. Please spell out in full. 

 

Response to R2C5: Done. 

 

R2C6: Page 9 line 20. A reference is needed for this statement. 

 

Response to R2C6: Done. 

 

R2C7: Page 12 line 3. Formatting of "130 million tons" 

 

Response to R2C7: Done. 

 

R2C8: Page 18 line 8. Can the authors expand on the bind of arsenic to 

soils particles. 

 

Response to R2C8: We have added the following text to expand on this 

statement:  

“Arsenite is less stably bound to aluminum hydroxides and aluminosilicate 

clay minerals in the soil than arsenate, for which they exhibit a much 

stronger binding preference30. 

 

R2C9: Page 25. When discussing toxicity it would be good to indicate what 

this measurement actually is, is it root assays in hydroponics or soil 

based systems. As hydroponics is more artificial than the natural soil 

systems. 

 

Response to R2C9: In our opinion, the discussion about arsenic toxicity 

in plants is clearly concerned with field studies where reduced yield has 

been a result. We have clarified this statement, and have ensured that 

comparative toxicity tests from hydroponic-based assays are not cited.  

 

R2C10: Page 26 line 12. The references related to phosphate transporters, 

are these the transporters known to be involved in arsenic transport or 

those involved in phosphate transport and possibly arsenate? It is 

unclear from the way that it is written. 

 

Response to R2C10: It is our opinion that the statement about arsenate 

being transported via phosphate transporters is very clear here. We state 

“Arsenate enters root cells through phosphate transporters” and then we 

have referenced experimental evidence for this in two model plant 

species.  

 

R2C11: Page 31, section 7.2. This section seems on the small side given 

all the potential mechanisms that could mitigate arsenic accumulation by 

the alteration of arsenic chemistry in the soil. This could be expanded 

further. Additionally, this is very rice focused (actually all of section 

7 is). While I understand that rice is the main target for reducing 

arsenic due to it being a dietary staple and having very high 

concentrations, you started the review by discussing not just rice but 

products like apple juice and vegetables and fruits. I think the 

mitigation strategies to be balanced need to also focus on non-rice 

plants to. 

 



Response to R2C11: We agree that this section is short and rice-focused. 

After re-reviewing the current literature, we added missing information 

on the use of iron-based amendments, and have expanded the section.  

We have restricted our discussion to agricultural settings, and to 

mesocosms or field-scale studies to highlight technologies closer to 

deployment, for the article’s target audience of stakeholders and 

regulators. Although we are aware of other amendment types (biochar, 

kaolin and various other organic matter additions) field scale testing of 

these materials has been minimal. Another issue – which we have added to 

the discussion – is that development of amendments proceeds without input 

from or consideration for the smallholder farmers or commercial entities 

that would use them, and almost always remain prohibitively priced, or 

without long term supporting data. We have made reference to this in our 

conclusions.  

In addition, the literature is heavily rice-focused, because these 

agronomic approaches have been developed in response to the Codex 

Commission’s adoption of a maximum level of 0.2 m/kg inorganic arsenic in 

polished rice, and because it is primarily in anaerobic flooded systems 

that arsenic uptake by plants is an issue. We have tried to include 

studies on other cropping systems where available, but these are 

inevitably fewer than the rice-based studies.  

 

R2C12: You discuss how water management, fertilisers and the plant can be 

altered for growing on arsenic soils, I think this could be expanded into 

possible remediation strategies for the soil as well. A lot of the 

information that you present in the opening sections is about the 

addition to arsenic to land / soil, a section on mitigation of this and 

then dealing with high arsenic soils would be good. 

 

Response to R2C12: This is an interesting topic, but we feel an 

additional section on phytoremediation of highly arsenic contaminated 

soils is well beyond the scope of this article. Our focus is on the route 

arsenic takes into the human food supply, from soils not necessarily 

classified as highly arsenic contaminated, and how this can be managed to 

reduce  dietary arsenic exposure. A section on mitigation of arsenic 

input into agricultural soil is also not warranted, since much of the 

arsenic contamination relevant to food production is either natural, 

legacy (former pesticide application), or the result of efficient plant-

based arsenic accumulation mechanisms. We have dealt with some of these 

aspects in our conclusion, where we state that information on arsenic 

levels in soils be made more available so the appropriate action can be 

taken to avoid human exposure.  

 



 
 
 
 
August 19 2016 
 
To Whom It May Concern:, 
 
This letter accompanies the submission of our research article, “Understanding arsenic 
dynamics in agronomic systems to predict and prevent uptake by crop plants”. This is an 
original work. It has never been previously published, in whole or in part, nor is it currently 
under consideration for publication elsewhere. We declare that there are no actual or potential 
competing interests, and that all authors have read and approved the manuscript and that they 
accept responsibility for its contents and agree it is ready for submission.  
 
This paper is part of a series of reviews that resulted from the Collaborative on Food Arsenic 
and Associated Risk and Regulation, which took place at Dartmouth College, on November 2 
2015. The workshop was attended by national and international scientists who lead the field on 
the study of arsenic in the environment and its affects on our health. The aim of the C-FARR 
workshop were to identify and synthesize information necessary to advance regulation of 
arsenic as a food supply contaminant.  
 
This particular review is on arsenic in agronomic systems, and covers processes that influence 
the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural 
and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic 
speciation and availability, through to mechanisms of uptake by crop plants and potential 
mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake 
of arsenic, and to work toward a long-term solution to the presence of arsenic in agronomic 
systems. The past two decades have seen important advances in our understanding of how 
sources of arsenic to the soil are influenced by biogeochemistry and result in human exposure, 
which must now prompt an informed reconsideration and unification of regulations that protect 
the quality of agricultural and residential soils. 
 
Please note that the review is written to be accessible to a wide range of audiences, from the 
expert to the informed layperson.  
 
I look forward to a constructive review of our work at Science of the Total Environment 
 
Sincerely, 
 

 
 

Department of Biological Sciences • Dartmouth College • Hanover • New Hampshire • 03755 • 603 646 1037 
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Response to Reviewers 

 

We thank both reviewers for taking the time to give our paper a rigorous and thoughtful 

peer review, and for ultimately improving the quality of the writing and the information. We 

include our responses to their comments below.  

 

Reviewer 1 Comment 1 (R1C1): Page 3 L15-18: This sentence is a bit 

misleading.  Importantly, As uptake by rice readily occurs in non-contaminated soils because 

naturally present As is liberated and plant available under reducing soil conditions.  The 

sentence as written suggests that As uptake into rice is due to contamination.   

 

Response to R1C1: We agree; this is an important point. To make it clearer that arsenic 

contamination of soil is not necessarily a pre-requisite for its entry into food crops, we have 

added after L15-18: “The presence of elevated concentrations of arsenic in the soil is not a 

pre-requisite in dietary arsenic exposure as seen in the effective accumulation of arsenic by 

rice grown in uncontaminated soils.”  

 

R1C2: In addition, I would argue that "in many cases" the route of As exposure via food is 

not more significant than drinking water.  In the US, As ingestion via food is a primary route 

of exposure because most drinking water in the US has low As.  However, in other more 

populated regions (e.g. S and SE Asia) drinking water is the primary route of exposure and 

ingestion via food is secondary. 

 

Response to R1C2: We agree: this generalization is a US-centric view. In place of “In many 

cases”, we have specified that “When drinking-water arsenic concentrations are low, dietary 

arsenic can be a significant exposure route.”  

 

R1C3: Page 4 L6 and L8 and elsewhere: Is the use of in text URLs suitable for STODEN? 

Please check. I suggest to cite them in the references instead. 

 

Response to R1C3: Agreed. We have replaced full URLs with citations and moved them to 

the bibliography. 

 

Responses to Reviewers Comments
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R1C4: Page 5 L8: It is not clear what the 2.1 mg/kg level is for in Florida.  Is that agricultural 

soils? 

 

Response to R1C4: We have added the missing information. The sentence now reads, “for 

instance, New Jersey has a cleanup criterion of 20 mg/kg and Florida has a cleanup target 

of 2.1 mg/kg for residential and 12 mg/kg for industrial sites.”  

 

R1C5:Page 5 L22-23: This is generally true up to a point, but after a threshold is reached As 

levels in plants may decrease with increasing As in soil or water because As begins to 

impose plant toxicity, which affects uptake of solutes including As.  See, e.g. 

⇒       Panaullah, G. M.; Alam, T.; Hossain, M. B.; Loeppert, R. H.; Lauren, J. G.; Meisner, C. A.; 

Ahmed, Z. U.; Duxbury, J. M., Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant 

and Soil 2009, 317, (1-2), 31-39. 

⇒       Syu, C. H.; Huang, C. C.; Jiang, P. Y.; Lee, C. H.; Lee, D. Y., Arsenic accumulation and 

speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in 

arsenic-elevated paddy soils. Journal of Hazardous Materials 2015, 286, 179-186. 

 

Response to R1C5: We have changed this statement to read, “Below toxic concentrations, 

the higher the total soil arsenic concentration (the sum of all arsenic species, regardless of 

bioavailability) the higher the crop uptake of arsenic, including….” and have added the 

Panaulla and Syu references suggested by Reviewer 1.  

 

R1C6: Page 6 L13: Suggest to change to "most soils range < 7.5 - 20 mg/kg arsenic" for 

clarity 

 

Response to R1C6: Done.  

 

R1C7: Page 11 L11 and elsewhere: Are edible plant tissue concentrations reported in mg/kg 

on a fresh weight or dry weight basis?  This should be clearly stated to avoid confusion.  I 

assume dry weight, but many of the market basket surveys (especially the FDA total diet 

study) report on fresh weight.  Plants are generally 90% water, so this detail is important 

when comparing concentrations. 

 

Response to R1C7: Done. This has been stated clearly at first mention.  
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R1C8: Page 12 L3: There is a hyperlink for "130 million tons" which should instead be 

removed and referenced. 

 

Response to R1C8: Done.  

 

R1C9: Page 12 L7: change "since" to "because" 

 

Response to R1C9: Done 

 

R1C10: Page 13 L13: Please define DMA and MMA.  Not all STODEN readers will know what 

those compounds are. 

 

Response to R1C10: Done 

 

R1C11: Page 14 L8-15: It should be considered that the microbial communities also differ, 

and that microbes are known to methylate inorganic As as a detoxification 

mechanism.  DMA and inorganic As differ in their in planta mobility, which is likely a 

contributing factor in enhanced total As (as DMA) in US vs Bangladeshi rice. 

 

Response to R1C11: To our knowledge there are no comparative studies on the soil 

microbial communities between (for instance) the USA and Bangladesh that would support 

this statement, although it is a well-informed hypothesis. We are wary – particularly on what 

seems to have been a contentious issue – of hypothesizing about why USA rice contains 

more arsenic, or why the arsenic speciation differs. We have stated however, in response to 

this comment, what factors may be involved and what the uncertainties are, which will 

hopefully embrace the comment of Reviewer 1. We have also referenced the statement that 

plants themselves cannot methylate arsenic. This paragraph now reads: 

“Former pesticide application has been suggested be a factor in the presence of higher 

levels of total arsenic found in rice grown in the south-central regions of the USA65, 66 

compared to other areas of the USA and to other countries, such as Bangladesh67. Evidence 

on varietal differences in arsenic uptake, speciation and distribution within rice grain (See 

also Section 6) strongly suggest that soil arsenic concentration is not the sole, nor 

particularly the main driver of this phenomenon.  Other factors likely to be influential 
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include the differences in the soil microbial community composition between geographical 

regions that affect arsenic methylation, which – considering that the ability to methylate 

arsenic has not been found in plants – may be another driving factor.” 

 

R1C12: Page 15 L1-3: It is not clear if the Florida study was from the reference 68?  If not, 

please provide the reference. 

 

Response to R1C12: Done.  

 

R1C13: Page 17 L16: silicate/silicic acid should also be mentioned because it competitively 

desorbs arsenite.  See, eg. Luxton TP, Tadanier CJ, Eick MJ. Mobilization of arsenite by 

competitive interaction with silicic acid. Soil Sci Soc Am J. 2006;70:204-214. 

 

Response to R1C13: Done.  

 

R1C14: Page 19 L5: What is the reference for the "animal waste products" part of the 

sentence? 

 

Response to R1C14: Citation has been added.  

 

R1C15: Page 20 L17-19: This sentence is a bit misleading.  All plants tend to acidify the 

rhizosphere due to cation uptake and charge balance by releasing protons to the 

rhizosphere.  In other words, iron uptake by non-grasses is not the only mechanism that 

results in an acidified pH; those processes (e.g. cation uptake) are universal in all higher 

plants. 

 

Response to R1C15: Sentence now reads “Rhizosphere acidification occurs in all plant 

species during cation uptake and charge balance, when protons are released into the 

rhizosphere”. 

 

R1C16: Page 20 L22: for the non-expert, I suggest to explicitly state why high OC in the 

rhizosphere enhances As solubility (i.e. drives microbially-mediated reductive dissolution). 
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Response to R1C16: We have added “by stimulating microbially-mediated reductive 

dissolution of soil minerals” 

 

R1C17: Page 21 L4: It should be "anaerobic" not "aerobic" when discussing submerged rice 

plants. 

 

Response to R1C17: Done. 

 

R1C18: Page 26 L12-L14.  Clear evidence has shown that LSi 1 and 2 transporters are 

responsible for arsenite uptake into rice roots.  These transporters are located on the two 

casparian strips on the exodermis and the endodermis.  Note that no transporter is needed 

to move the neutral arsenous acid (i.e. arsenite) molecule to the casparian strip, as this can 

be done apoplastically. 

 

Response to R1C18: Thank you. This statement has been deleted, and the statement “In rice, 

Low Silicon 1 (OsLsi1) and OsLsi2 are silicic acid transporters and arsenite, MMAV, and DMAV 

are among their unintended targets148, 149.” has been moved up and the paragraph edited 

accordingly.  

 

R1C19: Page 27 L17-18:  The way it is written, it sounds like DMA and MMA start to flow 

backward "reversed"…I believe what was intended from this sentence is something like 

"While the inorganic forms are more readily taken up from soil than organic forms, the 

organic forms are more readily transported to shoots because…".   

 

Response to R1C19: This statement now reads, “Despite having a lower affinity for 

transporters into the plant than inorganic forms, organic arsenic species are more efficiently 

transported toward the shoot than inorganic forms.”  

 

R1C20: Also, there was no earlier mention of the relative differences between inorganic and 

organic As for uptake.  Consider revising. 

Response to R1C20: Statements about the relative differences in uptake of arsenic species 

are included in two statements in Section 6.2: “In magnitude, plants take up arsenicals from 

the soil in the order arsenite > arsenate > DMA > MMA” and “The arsenic uptake specificity 

of OsLsi1 is arsenite >> MMA > DMA”.  
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R1C21: Page 31 L7-19: It should also be mentioned that increased exogenous Si can down-

regulated the Lsi1 transporter, which further decreases the potential for As uptake. 

 

Response to R1C21: Added. Thank you.  

 

R1C22: Page 31 L18-19.  Suggest to change to "…practice for smallholder farmers), can 

provide silicon without increasing methane production and decreases either total or 

inorganic As in grain." 

 

Response to R1C22: Added. 

 

Reviewer 2: 

Reviewer 2 Comment 1 (R2C1): As the authors discuss the regulated limits of arsenic in rice, 

I would have thought a section relating these exposures to arsenic to health impacts was 

needed. Some indication from the scientific literature on the impacts that arsenic rich water 

and food has on human health is needed, especially in relation to the concentrations given 

as the regulated limits. 

 

Response to R2C1: This is a great comment. The reviewer refers to exposure epidemiological 

studies of arsenic, which is a huge area of science that is outside the scope of this synthesis 

paper. This topic is the subject of another excellent article submitted to this special issue. 

We have added a statement referring the reader to that article at the end of the first 

paragraph of the introduction:  

“An in-depth review of the current findings on the relationship between dietary arsenic 

exposure and human health is provided by Davis et al. (this issue)..” 

 

R2C2: Page 4 line 2. "but no safe level of arsenic has been found" what do the authors 

mean by this statement? The next sentence discusses impacts of arsenic in compared to 

MCLs, but does not go as far as saying that any concentrations are harmful. 

 

Response to R2C2: We agree that the statement “no safe level of arsenic has been found”, 

suggests that any arsenic level causes actual harm, when in fact observations are that any 

level causes an effect on biological model systems, such as cell lines. We recognize that this 
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is an important distinction. This statement has been deleted. We have clarified the message 

here and the statement now reads:  

“but given that measurable biological effects occur in at levels below the current maximum 

contaminant level (MCL) for arsenic in drinking water2, these low levels can still translate into 

significant exposures, particularly in children and presumably in adults who consume a lot of 

rice.”  

 

R2C3: Page 4 line 18. "the majority of other nations", some clarification needed on this 

statement as the statement above this indicates that the 10ug/l is supported by WHO, EU 

and Canada. Does that mean that all other nations except those in the EU, Canada and the 

couple of other mentioned nations have a limit of 50 ug/l? 

 

Response to R2C3: We have named the countries that still adopt a standard of 50 µg/L, and 

included a citation.  

 

R2C4: Page 5 line 2. Reference needed for this statement. 

 

Response to R2C4: Done. 

 

R2C5: Page 6 line 21. "USGS" I think this is the first use of this abbreviation. Please spell out 

in full. 

 

Response to R2C5: Done. 

 

R2C6: Page 9 line 20. A reference is needed for this statement. 

 

Response to R2C6: Done. 

 

R2C7: Page 12 line 3. Formatting of "130 million tons" 

 

Response to R2C7: Done. 

 

R2C8: Page 18 line 8. Can the authors expand on the bind of arsenic to soils particles. 
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Response to R2C8: We have added the following text to expand on this statement:  

“Arsenite is less stably bound to aluminum hydroxides and aluminosilicate clay minerals in 

the soil than arsenate, for which they exhibit a much stronger binding preference30. 

 

R2C9: Page 25. When discussing toxicity it would be good to indicate what this 

measurement actually is, is it root assays in hydroponics or soil based systems. As 

hydroponics is more artificial than the natural soil systems. 

 

Response to R2C9: In our opinion, the discussion about arsenic toxicity in plants is clearly 

concerned with field studies where reduced yield has been a result. We have clarified this 

statement, and have ensured that comparative toxicity tests from hydroponic-based assays 

are not cited.  

 

R2C10: Page 26 line 12. The references related to phosphate transporters, are these the 

transporters known to be involved in arsenic transport or those involved in phosphate 

transport and possibly arsenate? It is unclear from the way that it is written. 

 

Response to R2C10: It is our opinion that the statement about arsenate being transported 

via phosphate transporters is very clear here. We state “Arsenate enters root cells through 

phosphate transporters” and then we have referenced experimental evidence for this in two 

model plant species.  

 

R2C11: Page 31, section 7.2. This section seems on the small side given all the potential 

mechanisms that could mitigate arsenic accumulation by the alteration of arsenic chemistry 

in the soil. This could be expanded further. Additionally, this is very rice focused (actually all 

of section 7 is). While I understand that rice is the main target for reducing arsenic due to it 

being a dietary staple and having very high concentrations, you started the review by 

discussing not just rice but products like apple juice and vegetables and fruits. I think the 

mitigation strategies to be balanced need to also focus on non-rice plants to. 

 

Response to R2C11: We agree that this section is short and rice-focused. After re-reviewing 

the current literature, we added missing information on the use of iron-based amendments, 

and have expanded the section.  
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We have restricted our discussion to agricultural settings, and to mesocosms or field-scale 

studies to highlight technologies closer to deployment, for the article’s target audience of 

stakeholders and regulators. Although we are aware of other amendment types (biochar, 

kaolin and various other organic matter additions) field scale testing of these materials has 

been minimal. Another issue – which we have added to the discussion – is that development 

of amendments proceeds without input from or consideration for the smallholder farmers or 

commercial entities that would use them, and almost always remain prohibitively priced, or 

without long term supporting data. We have made reference to this in our conclusions.  

In addition, the literature is heavily rice-focused, because these agronomic approaches have 

been developed in response to the Codex Commission’s adoption of a maximum level of 0.2 

m/kg inorganic arsenic in polished rice, and because it is primarily in anaerobic flooded 

systems that arsenic uptake by plants is an issue. We have tried to include studies on other 

cropping systems where available, but these are inevitably fewer than the rice-based studies.  

 

R2C12: You discuss how water management, fertilisers and the plant can be altered for 

growing on arsenic soils, I think this could be expanded into possible remediation strategies 

for the soil as well. A lot of the information that you present in the opening sections is 

about the addition to arsenic to land / soil, a section on mitigation of this and then dealing 

with high arsenic soils would be good. 

 

Response to R2C12: This is an interesting topic, but we feel an additional section on 

phytoremediation of highly arsenic contaminated soils is well beyond the scope of this 

article. Our focus is on the route arsenic takes into the human food supply, from soils not 

necessarily classified as highly arsenic contaminated, and how this can be managed to 

reduce  dietary arsenic exposure. A section on mitigation of arsenic input into agricultural 

soil is also not warranted, since much of the arsenic contamination relevant to food 

production is either natural, legacy (former pesticide application), or the result of efficient 

plant-based arsenic accumulation mechanisms. We have dealt with some of these aspects in 

our conclusion, where we state that information on arsenic levels in soils be made more 

available so the appropriate action can be taken to avoid human exposure.  
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Abstract 1 

This review is on arsenic in agronomic systems, and covers processes that influence 2 

the entry of arsenic into the human food supply. The scope is from sources of 3 

arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere 4 

processes that control arsenic speciation and availability, through to mechanisms of 5 

uptake by crop plants and potential mitigation strategies. This review makes a case 6 

for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to 7 

work toward a long-term solution to the presence of arsenic in agronomic systems. 8 

The past two decades have seen important advances in our understanding of how 9 

sources of arsenic to the soil are influenced by biogeochemicalstry and physiological 10 

processes influence result in human exposure to soil arsenic, which and this must 11 

now prompt an informed reconsideration and unification of regulations that to 12 

protect the quality of agricultural and residential soils.  13 

 14 

1. Introduction 15 

Consumption of staple foods such as rice, beverages such as apple juice, or 16 

vegetables grown in historically arsenic-contaminated soils areis now recognized as a 17 

tangible routes of arsenic exposure . The presence of elevated concentrations of 18 

arsenic in the soil is not a pre-requisite for dietary arsenic exposure; seen in the 19 

accumulation of arsenic by rice grown in uncontaminated soils1.that, When drinking-20 

water arsenic concentrations are low, dietary arsenic can be a significant exposurein 21 

many cases, is more significant than exposure from drinking water2. Understanding 22 

the sources of arsenic to crop plants and the factors that influence them is key to 23 
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reducing human exposure now and preventing exposure in future. In addition to the 1 

abundant natural sources of arsenic, there are a large number of industrial and 2 

agricultural sources of arsenic to the soil; from mining wastes, coal fly ash, glass 3 

manufacturing, pesticide application, wastewater sludge, pharmaceutical waste, 4 

livestock dips, smelting activities to phosphate fertilizers. Plant uptake of arsenic was 5 

previously assumed to be too low to merit setting limits for arsenic in food crops, 6 

but given that no safe level of arsenic has been found; measurable biological effects 7 

occur in at arsenic levels below the current maximum contaminant level (MCL) for 8 

arsenic in drinking water3, these low levels can still translate into significant 9 

exposures, particularly in children4 and presumably in adults who consume a lot of 10 

rice. In response, the World Health Organization (WHO) who set an advisory MCL for 11 

inorganic arsenic in white (polished) rice of 0.2 mg/kg 12 

5(http://www.who.int/ipcs/assessment/public_health/arsenic/en/) along with the limit 13 

of 10 µg/L in water, and the European Union set similar standards that included a 14 

lower MCL (0.1 mg/kg) for rice-containing baby foods6 (http://eur-15 

lex.europa.eu/legal-contect/EN/TXT/?uri=urisrv%3AOJ.L_2015.161.01.0014.01.ENG). 16 

Currently, dietary arsenic exposure is suspected to play a role in cardiovascular 17 

disease in adults7, and to disrupt the glucocorticoid system (involved in learning and 18 

memory) to those exposed in utero8. An in depth review of the current findings on 19 

the relationship between dietary arsenic exposure and human health is provided by 20 

Davis et al. (this issue). 21 

 22 
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In the United States, regulations on arsenic are distributed to several agencies. The 1 

Environmental Protection Agency (EPA) developed the MCL for arsenic in drinking 2 

water (10 µg/L) in 2006; a level supported by the World Health Organization, Canada 3 

and the European Union. In the state of New Jersey (USA) the limit is 5 µg/L, and in 4 

Australia, 7 µg/L. The majority ofMany other nations still adopt a level of 50 µg/L 5 

(Bahrain, Bangladesh, Bolivia, China, Egypt, India, Indonesia, Oman, Philippines, Saudi 6 

Arabia, Sri Lanka, Vietnam, Zimbabwe)9, with the exception of Mexico (35 µg/L). In 7 

the USA, The Food and Drug Administration (FDA) is responsible for setting action 8 

levels for arsenic in food, which includes apple and pear juice at 10 µg/L, in line with 9 

EPA’s drinking water MCL. In Canada, the Canadian Food Inspection Agency issued 10 

alerts on excessive arsenic in rice and pear products in 2014. Consistent with the 11 

European Commission’s limit for arsenic in rice used in food production for infants 12 

and young children, the FDA is proposing an action level of 0.1 mg/kg for inorganic 13 

arsenic in infant rice cereal10. Foods in Australia and New Zealand may not contain 14 

more than 1 mg/kg dry mass of arsenic, and salt for food use must not contain more 15 

than 0.5 mg/kg. Japan has a limit of 15 mg/kg of arsenic in paddy soils 16 

(http://www.env.go.jp/en/water/soil/sp.html11). LikewiseLikewise, Thailand has an 17 

agricultural arsenic soil quality standard of 3.9 mg/kg. Within the USA, states differ 18 

widely in their action levels for arsenic in soil, for instance New Jersey has a cleanup 19 

criterion of 20 mg/kg and Florida has a cleanup target level of 2.1 mg/kg and 12 20 

mg/kg for industrial sites12.  21 

 22 
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Arsenic occurs in food because it is present in soil and water and is taken up by 1 

plants. This review article brings together the latest scientific information on arsenic 2 

in agronomic systems, describing its sources in soils and the processes that influence 3 

the uptake of arsenic by crop plants. The intention of this review is to prompt a 4 

reconsideration and unification of government regulations on action levels for arsenic 5 

in agricultural soil; raise awareness of how both former and ongoing inputs of arsenic 6 

to soil can result in food contamination and impacts to human health and finally, to 7 

indicate the way forward for mitigation strategies that safeguard valuable soil 8 

resources. 9 

 10 

2. Natural sources of arsenic in soil 11 

Below toxic concentrations, tThe higher the total soil arsenic concentration (the sum 12 

of all arsenic species, regardless of bioavailability) the higher the crop uptake of 13 

arsenic., including This is true of anaerobic cultivation systems such as rice13-15, 14 

aerobic horticultural systems16 as well as conventional (aerobic) agriculture15. The 15 

global average total soil arsenic concentration is 5 mg/kg, (equivalent to parts per 16 

million), but there is large variation between and within geographical regions17. 17 

Where soils have formed on arsenic-rich bedrock, or downstream of these bedrocks, 18 

very high concentrations of natural arsenic can result. Concentrations of up to 4000 19 

mg/kg arsenic have been measured in soils from the arsenopyrite belt (iron arsenic 20 

sulphide, FeAsS) in Styria, Austria18, for instance. There are approximately 568 known 21 

minerals that contain arsenic as a critical component19. Arsenic is present in many 22 

rock-forming minerals because it can chemically substitute for phosphorus (V), 23 
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silicate (IV), aluminum (III), iron (III) and titanium (IV) in mineral structures. Global 1 

mapping data of total arsenic concentrations in topsoil is not available, although. 2 

lLarge-scale regional maps are available for soil arsenic concentrations in Europe20 3 

and the USA 21. European data predicts that most soils are range below < 7.5 - 20 4 

mg/kg arsenic, with a median of 6 mg/kg20. This prediction comes from block 5 

regression-kriging; a spatial prediction technique based on regressing soil arsenic 6 

concentrations against auxiliary variables, and is useful because it uses a particularly 7 

high resolution (block size of 5 km2). On a continental scale, large zones of soils with 8 

approximately 30 mg/kg arsenic have been found in southern France, the 9 

northeasternnorth-eastern Iberian Peninsula and south-west England, with the two 10 

latter being zones of extensive natural mineralization associated with base and 11 

precious metal mining activities. The United State Geological Survey (USGS) soil 12 

sampling of the contiguous USA reports a mean USA soil arsenic concentration of 13 

approximately 5 mg/kg with 5 and 95 percentile values of approximately 1.3 and 13 14 

mg/kg respectively22. Large regional patterns are apparent in the data, for example 15 

the soils of New Hampshire have soil arsenic concentrations of approximately 10 16 

mg/kg arsenic, and Florida, 3.5 mg/kg. The sampling density goal for the USA surface 17 

soils and stream sediments database is 1 per 289 km2 23, but is currently at  only 1 18 

sample per 1600 km2. This contrasts with smaller regional surveys such as the 19 

recently published Tellus database for Northern Ireland that has a sampling density 20 

of 2 km2 24 (median total soil arsenic concentration 8.7 mg/kg). At this sampling 21 

density, fine-scale data for factors shown to affect soil arsenic, such as bedrock type, 22 
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altitude and organic matter for instance, can be observed, providing the opportunity 1 

to make predictions about arsenic bioavailability and mobility.  2 

 3 

Soil or sediment arsenic concentrations are the result of the complex and dynamic 4 

interplay between inputs and outputs25. Natural sources of arsenic to agronomic 5 

catchments are dominated by bedrock weathering (mechanical, chemical and 6 

biological) and depositional inputs, with the ultimate sinks at the base of catchments 7 

often being a significant distance away from sources26. Outputs include leaching into 8 

water bodies (vertically and horizontally), soil erosion25 and biovolatilization27. In arid 9 

regions surface evaporation of water can lead to arsenic enrichment from the draw 10 

up of subsurface water25 and from waters used in crop irrigation28. Mass-balances 11 

(accounting for all inputs and outputs for a particular ecosystem) are rarely 12 

conducted for arsenic fluxes within catchment areas, but a good example is from a 13 

mining-impacted catchment area29, where chemical weathering, followed by 14 

mechanical weathering dominated arsenic inputs, which were primarily from 15 

arsenopyrite. Similarly, in a gold-mining region, weathering contributed an estimated 16 

95% of the arsenic30. In a forested catchment area, where atmospheric arsenic inputs 17 

were the dominant source to highly organic soil (soils with more than 10% organic 18 

matter), inputs of arsenic via precipitation were ~6 g/ha/y31, and organic soils were a 19 

net source of arsenic, while mineral soils (soils with less than 10% organic matter) 20 

were a sink. This agrees with depositional inputs of arsenic measured in the UK, 21 

which ranged from ~1 to ~10 g arsenic/ha/y32. UK regional scale maps show that 22 

arsenic deposition is highest at altitude and in the west of the country; the least 23 
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polluted regions with air masses originating in the Atlantic. This suggests a marine 1 

source of arsenic. Depositional maps relate well to soil arsenic maps such as in maps 2 

of Northern Ireland and England33 that show highest arsenic concentrations in peat 3 

soils at higher altitude, along with bedrock geological anomalies. Peat soils at higher 4 

altitude are sinks for arsenic, and become sources if the peat is mineralized or 5 

eroded. The topic of upland organic soils acting as sinks and sources of arsenic is 6 

receiving more research attention34, and could be important on a regional scale as a 7 

source of arsenic to downstream sediments.  8 

 9 

In large catchment areas of continental importance, such as the deltas that form to 10 

the south and east of the Himalayas, plate tectonic-derived mechanical weathering is 11 

thought to be the most important source of arsenic. One theory is that the 12 

mechanical weathering caused by Pleistocene tectonic uplift in the Himalayas is the 13 

key to understanding why arsenic is so elevated in Holocene aquifers, such as those 14 

of SE Asia, and in the glacial tills of Europe and North America26. Mechanical 15 

weathering of bedrock exposes previously inaccessible mineral surfaces, and the finer 16 

grinding leads to enhanced surface areas for chemical and microbial weathering to 17 

take place, causing greater solubilisation of arsenic25, 26, 35. Chemical and microbial 18 

weathering can take place at or near the source, or in sediment sinks.; Ffor 19 

instanceinstance, bacteria isolated from Bay of Bengal aquifers can mobilize arsenic 20 

from apatite35 (See Section 5). Invariably, the arsenic loadings into soil will be 21 

dependent on arsenic in the bedrock, and the extent of the weathering of that 22 

bedrock-derived material along the route from source to sink. Soils with basalt 23 
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bedrock had the lowest median arsenic content, while those with psammite, 1 

semipelite, and lithic arsenite bedrocks had the highest. Interpretation of such fine-2 

scale mapping can ultimately lead to predictions of soil arsenic concentrations where 3 

detailed maps are not available. Combined with an understanding of soil chemistry, 4 

this will enhance the ability to predict elevated concentrations of arsenic in crops36.   5 

 6 

3. Anthropogenic sources of arsenic to soil 7 

Many anthropogenic activities have increased soil arsenic concentrations above the 8 

natural, background levels mentioned in Section 2 above, and they have the potential 9 

to increase the arsenic concentration in food. This is especially the case in the USA 10 

where the widespread use of arsenic-based herbicides, pesticides and livestock 11 

antibiotics throughout the 20th century has ultimately increased the arsenic 12 

concentrations of current productive USA agricultural soils37-39. 13 

 14 

3.1. Base and precious metal mining 15 

The dominant mineral source of arsenic is thought to be pyrite (iron sulfide, FeS2)40, 16 

an economically important ore deposit. High arsenic concentrations are found in 17 

many oxide minerals and hydrous metal oxides, either part of their structure or as 18 

sorbed and occluded species41. Iron oxides accumulate arsenic up to concentrations 19 

of several weight percent (1 weight % being equivalent to 10,000 mg/kg), and 20 

arsenic tends to bind to iron (III) (hydr)oxides whenever they are present. Arsenic is 21 

found predominantly as arsenopyrite but also can occur as orpiment (arsenic 22 

trisulphide As2S3), realgar (α-As4S4) and other arsenic sulfide minerals42, 43. Arsenic is a 23 
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byproduct of most mining operations and is present at high concentrations in the 1 

mine waste, and, because arsenic sulfides are particularly prone to oxidation in 2 

surface environments, in mining wastewaters42, 44. Arsenic can constitute 1% or more 3 

of the ore and solid waste, and wastewaters and impacted streams often contain 4 

dissolved arsenic concentrations ranging from 0.01 to over 10 mg/L. Because mining 5 

and smelting operations are localized, arsenic contamination of soils exists around 6 

the mine site with the concentration decreasing with distance from the source. 7 

Windblown dispersion of fine particulate material is a particular problem, spreading 8 

contamination greater distances from the mine site. This fine material - which is not 9 

completely removed by washing16 - can directly contaminate plant material; 10 

especially leafy material with high surface area. This presents a tangible risk to 11 

residents and home gardeners in the vicinity of areas with significant surface soil 12 

arsenic contamination. A comparison of arsenic concentrations in vegetables grown 13 

in SW England (the site of historic mining activities) with those from a pristine site in 14 

NW Scotland found a generally good correlation between total plant arsenic and soil 15 

arsenic concentrations. Increased arsenic concentrations were measured in produce 16 

from SW England where soil arsenic concentrations ranged from 120 – 1130 mg/kg. 17 

Arsenic concentrations were high in leafy greens (kale, spinach, lettuce) and some 18 

unpeeled vegetables (potatoes, swedes, carrots) were higher than when peeled, 19 

which, in both cases, points to contamination from windblown soil particles and soil 20 

adhesion to below ground biomass, rather than from root uptake. In this particular 21 

study, the majority of arsenic was present as the inorganic form16.  Similar results 22 

were obtained from home gardens near the Iron King Mine Superfund Site in Arizona, 23 
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USA45, 46. Here the tailings had arsenic concentrations of 3,710 mg/kg and residential 1 

soil sampled adjacent to the site ranged from 120 – 633 mg/kg. Edible plant tissue 2 

concentrations ranged from < 0.01 – 1.96 mg/kg (plant concentrations are expressed 3 

as dry weight throughout), and were generally positively correlated with soil arsenic 4 

concentrations. Leafy and high surface area vegetables such as lettuce, kale, broccoli 5 

and cabbage accumulated higher arsenic concentrations than beans, tomatoes, 6 

cucumbers and peppers. Arsenic in mine-affected vineyard soils in Italy ranged from 7 

4 – 283 mg/kg and positive correlations were observed between soil concentrations 8 

and arsenic levels in vine leaves and grapes, however, levels in wine were low (< 1.62 9 

µg/L)47.  In the Hunan province, China, the high levels of inorganic arsenic in rice 10 

have been traced to mining activities in the area48-50. 11 

 12 

3.2. Coal combustion for energy 13 

The concentration of arsenic in USA coal ranges from 1 – 71 mg/kg with an average 14 

concentration of 24 mg/kg51. Fly ash, the major byproduct of the coal combustion 15 

process, consists of fine particles that are driven out with the flue gases, and is a 16 

major source of arsenic to the wider environment. Coal ash is one of the most 17 

abundant of industrial wastes; close to 130 million tons52 130 million tons of coal fly 18 

was generated in the USA in 2014, with 100 million tons estimated from the 19 

European Union in 201153. Arsenic concentrates in the fly ash during combustion of 20 

coal for energy; the median arsenic concentration in USA fly ash is 71 mg/kg54. Fly 21 

ash is often sluiced into settling basins, and since because arsenic in fresh ash is 22 

quite soluble, wastewater arsenic concentrations can consequently be quite high. 23 
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Arsenic can build up in the sediments of coal fly ash settling basins and reach 1 

concentrations of over 1000 mg/kg. Catastrophic failures of these setting basins have 2 

caused severe environmental problems and contaminated surface waters with 3 

arsenic55. There is a well-founded concern that arsenic from coal combustion wastes 4 

can contaminate soil and enter the food supply. The use of coal fly ash as a soil 5 

amendment can lead to elevated arsenic concentrations in crops (as well as boron, 6 

selenium and molybdenum), although its lack of soil macronutrients and the 7 

potential for arsenic toxicity prevents the sole application of coal fly ash as a soil 8 

amendment56, 57. Formulating ash/organic waste mixtures that conform to USEPA 9 

regulations for total arsenic application and meet soil and plant fertility requirements 10 

has been shown to safe and effective for agronomic use58. 11 

 12 

3.3. Pesticides 13 

Perhaps the largest anthropogenic input of arsenic to agricultural soils in the USA is 14 

from the agricultural use of arsenic-based pesticides and herbicides for most of the 15 

20th century. Calcium arsenate and lead arsenate were used extensively up to the 16 

1950s, mostly on orchard soils to combat the codling moth. At peak, 132,000 metric 17 

tons of each pesticide compound was applied annually between 1930-194037. In 18 

addition to apples, inorganic arsenic pesticides were used on a range of crops 19 

including essentially all fruit trees, vine berries, sweet potatoes, white potatoes, most 20 

vegetables and cotton37. Both lead and arsenate have long residence times in soils 21 

and high concentrations (often >100 mg/kg) of these two elements have been 22 

reported in old orchard soils in Washington59, North Carolina60, New Hampshire61, 23 
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New Jersey62 and Virginia63. There is some evidence of greater mobility for arsenic 1 

(than lead)61, 64, and retention of both elements depends on soil type and other 2 

environmental factors but most of this legacy contaminant remains in the soil62. Use 3 

of lead arsenate decreased after 1950s and was finally banned in 1988. The organic 4 

arsenic compounds dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) 5 

were used as pesticides on cotton and herbicides for golf courses and right-of-ways 6 

until they too were withdrawn from use in 2013. High levels of MMA were reported 7 

in transient surface waters adjacent to a crop sprayer operation65. Legacy soil arsenic 8 

contamination resulting from organic arsenical pesticides plays a major role in 9 

straighthead disease of rice66 (See Section 6.1). It may be that arsenical pesticides 10 

have leached to groundwater, as has been suggested for the Texas High Plains 11 

Aquifer67, although a study of the Ogallala aquifer in the High Plains in Texas found 12 

no evidence of anthropogenic arsenic in the groundwater68.  Similarly, there was no 13 

relationship between groundwater arsenic and past (inorganic) arsenic pesticide 14 

usage in a comprehensive study of New Hampshire groundwater sources69. About 15 

10%, depending on soil substrate, of monosodium methyl arsenate applied to sandy 16 

soils (simulated golf course greens) leached into percolating water.  and 17 

Ddemethylation and methylation occurred because both inorganic arsenic species 18 

and DMA were also detected in the percolating water70. As with mining-impacted 19 

soils, plants grown on soils that are high in arsenic from arsenical pesticide 20 

contamination take up higher levels of arsenic into their edible tissues, observed for 21 

example in potatoes71, carrots72 and leafy green vegetables73, 74.  22 

 23 
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Former pesticide application has been suggested be a factor in the presence of 1 

higher levels of total arsenic found in rice grown in the south-central regions of the 2 

USA75, 76 compared to other areas of the USA and to other countries, such as 3 

Bangladesh77. A survey of arsenic concentrations in whole grain rice products 4 

purchased from various countries found that rice grown in the USA and EU contained 5 

more total arsenic than rice grown with arsenic-contaminated groundwater irrigation 6 

in Bangladesh67. Evidence on varietal differences in arsenic uptake, speciation and 7 

distribution within rice grain (See also Section 6) strongly suggest that soil arsenic 8 

concentration is not the sole, nor particularly the main driver of this phenomenon. 9 

{Meharg, 2004 #448}{Zavala, 2008 #449} Other factors likely to be influential include 10 

the differences in the soil microbial community composition between geographical 11 

regions that affect arsenic methylation, considering that plants themselves cannot 12 

methylate arsenic78.The distribution of arsenic forms found in the grains differed 13 

between cultivars, and is discussed in more detail in Section 6.  14 

 15 

3.4. Wood preservatives 16 

Chromated copper arsenate (CCA) is used as a wood preservative and was 17 

extensively used on decking, and other residential usages until a voluntary 18 

manufacturer withdrawal in 2003. The primary health concern is for young children in 19 

direct contact with CCA-treated wood, but localized leaching of arsenic (as well as 20 

chromium and copper) also occurs to surrounding soil. Soil arsenic concentrations of 21 

37 – 250 mg/kg have been reported for soils sampled near CCA-treated utility poles 22 

(N=12)79 and mean arsenic concentrations for soils collected below decks and 23 
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footbridges in Florida, USA was reported to be 28.5 mg/kg compared with a control 1 

concentration of 1.3 mg/kg (N= 65)80. Arsenic from CCA contaminated soils appears 2 

to be more bioavailable than from other anthropogenic sources to soil81.  3 

 4 

3.4. Organic manures 5 

Land application of sewage sludge (biosolids) in the USA is regulated by 6 

Environmental Protection Agency Part 503 Biosolids rule; which set the maximum 7 

arsenic concentration of the sludge at 75 mg/kg, an annual pollutant-loading rate of 8 

2.0 kilograms arsenic/hectarea (kg/ha) and a cumulative pollution-loading rate of 41 9 

kg/ha over the lifetime of applications. Assuming a plow layer of 17 cm, application 10 

at the maximum annual rate implies an approximate 1.2 mg/kg maximum increase in 11 

soil arsenic, while the cumulative maximum loading rate could increase soil arsenic 12 

concentrations by approximately 24 mg/kg over the lifetime of application and 13 

assuming no loss from the soil profile. This cumulative loading rate of 24 mg/kg is 14 

significant when considered against an average soil arsenic concentration of 5 mg/kg 15 

(See Section 2), however, relative to mine-impacted or inorganic arsenic pesticide 16 

impacted soils where arsenic concentrations are frequently > 100 mg/kg, it is of 17 

lesser concern. Also, sewage sludge is often high in aluminum and iron oxide phases, 18 

used in the flocculation process, which are efficient scavengers of inorganic arsenic 19 

thus lowering the arsenic bioavailability 82.   20 

 21 

Arsenic occurs in animal wastes primarily because of the former use of arsenic 22 

antibiotics in poultry and turkey feed; until 2015 four drugs, roxarsone, p-arsanilic 23 
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acid, carbarsone and nitrosone, were regulated for use, with roxarsone being the 1 

most prevalent. As of 2016 all four of these compounds have all been withdrawn 2 

from use83. All four are organic arsenic compounds with an arsenate functional group 3 

attached to a benzene ring, and differ by other substituents on the ring. The 4 

compounds are not readily adsorbed or metabolized and so occur at concentrations 5 

up to 40 mg/kg in animal manures. This provides three points of entry to the human 6 

food chain; directly through arsenic in chicken and turkey meat38, 39, 84, from plant 7 

uptake after land application of manure, and runoff to surface water or groundwater. 8 

A number of studies have shown that these organic arsenic compounds can be 9 

degraded by both photolytic85 and microbial86 processes and that this degradation 10 

happens both during composting of stockpiled litter87, 88 and after land application89, 11 

90.  Long term application of poultry litter to Upper Coastal Plain soils increaseds soil 12 

arsenic concentrations; from 2.7 to 8.4 mg/kg for an Upper Coastal Plain soil after 25 13 

years of application91.  and Ssimilar increases have been reported for other southern 14 

states of the USA92. There is evidence to suggest that other soluble constituents of 15 

the litter, for example phosphate and dissolved organic carbon compounds, facilitate 16 

arsenic solubility and leaching89, 92, 93.  17 

 18 

3.5. Seaweed fertilizers 19 

Seaweeds can contain far higher concentrations of arsenic than crop plants: up to 20 

100 mg/kg (See Taylor et al, this issue). In most cases the arsenic is present as 21 

arsenosugars, which are of low toxicity to humans (See Taylor et al, this issue). 22 

However, as in the case of poultry litter, these compounds degrade (ultimately) to 23 
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inorganic arsenic after land application94. Although seaweeds are a ‘niche’ soil 1 

amendment, their use agriculture is increasing and has been adopted by many 2 

organic farms as a soil fertilizer as well as a feed additive in organic dairy farming95. 3 

 4 

4. Biogeochemical cycling within terrestrial agronomic ecosystems 5 

Arsenic cycles within the soil surface and near-surface environment96, influenced by 6 

mineralogy, abiotic factors such as pH and redox potential (EH), and biotic factors 7 

such as microbially-mediated biomethylation.  8 

 9 

4.1. Redox regulation 10 

The most important biogeochemical step in the exposure of humans to arsenic is its 11 

release from soils and sediments into pore water; the water contained within soil 12 

pores and/or rock40. With the exception of extreme pH conditions (<4 or >9), or high 13 

concentrations of competing ions (e.g. phosphate, silicic acid or silicate97) the release 14 

of arsenic from its strong bonds with soil particles depends upon redox potential 15 

(EH); the extent of aeration of the soil40. As EH falls, electron acceptors are depleted 16 

and anoxic conditions develop, causing iron oxides and oxyhydroxides to be reduced 17 

and dissolve, releasing sorbed arsenic into the soil solution98 where it can be taken 18 

up by plant roots, or leached into groundwater.  19 

 20 

Agronomic cropping systems can be divided with respect to arsenic mobilization on 21 

the basis of their redox status. Dominant biogeochemical processes influencing 22 

aerobic systems, specifically cereals, upland rice, fruit tree orchards, and community 23 
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gardens, differ from those that dominate in anaerobic systems, predominantly in 1 

flooded rice paddies. In aerobic soils, arsenic speciation is predominantly arsenate 2 

(arsenic (V)), and is tightly bound to soil particles. Under anaerobic or flooded 3 

conditions, arsenic is reduced, and arsenite (arsenic (III)) is the dominant species40. 4 

Arsenite is less stably bound to aluminum hydroxides and aluminosilicate clay 5 

minerals in the soil particles than arsenate, for which they exhibit a much stronger 6 

binding preference40. With few exceptions (such as under conditions of sulfur release), 7 

transition of arsenic speciation from arsenate to arsenite is the most influential factor 8 

to arsenic bioavailability; and it is under anaerobic conditions where arsenic becomes 9 

an imminent human health concern. Influential biogeochemical processes in aerobic 10 

systems are ageing and accumulation of arsenic in soil, and in anaerobic systems 11 

reductive dissolution of iron-bearing minerals is the dominant process. 12 

 13 

4.2. Biotransformation to methylated and volatile species 14 

Volatile arsenicals are arsenic species with a boiling point below 150˚C; the most 15 

volatile of which is arsine gas (AsH3), followed by monomethylarsine (MeAsH2), 16 

dimethylarsine (Me2AsH2) and finally completely methylated trimethylarsine (TMA).  17 

Volatile arsenic species can be formed either biotically – by fungi, bacteria and 18 

algae27, 99, 100or abiotically99. In natural systems arsines readily react with oxygen to 19 

form non-volatile oxidation products, with AsH3 most rapidly oxidized and 20 

challenging to detect in environmental samples. Oxidation of the arsine gases to 21 

inorganic arsenic species completes the arsenic cycle, with arsenic returned to the 22 

soil by rain or dry deposition101. 23 
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Arsenic methylation in soils increases with decreasing redox potential102, and addition 1 

of organic matter. Increased arsenic volatilization was measured in soil after the 2 

addition of rice straw103, and animal waste products104. Inoculation of fungi 3 

(Penicillium and Ulocladium spp.) increased arsenic volatilization up to 8 fold in 4 

heavily contaminated and spiked soils105. Microbially mediated arsenic volatilization 5 

remains very inefficient, which hinders attempts to use it in soil remediation. Gaseous 6 

arsines are volatilized from arsenic contaminated soils into the atmosphere at very 7 

low rates: a microcosm study found 0.5 – 70 µg of arsenic kg-1 soil year-1 was 8 

volatilized from a range of soils and a range of arsenic levels27, and field 9 

measurements of arsenic volatilization are 1-2 orders of magnitude lower than those 10 

made in laboratory mesocosms 98.Genetic transformation of bacteria, using genes 11 

encoding for the protein product arsenite S-adenosyl methyltransferase (arsM) is an 12 

attempt to enhance arsenic methylation and volatilization. The arsM from 13 

Rhodopseudomonas palustris was expressed in Sphingomonas desiccabilis and 14 

Bacillus idriensis grown in an aqueous system, resulting in a 10-fold increased in 15 

arsenic volatilization compared to the wild type strains. In a soil-based system, 2.2 – 16 

4.5% of arsenic was removed via microbially-mediated volatilization over an 17 

incubation period of 30 days106 (See also section 5.3). 18 

 19 

4.3. Changes in soil arsenic bioavailability due to ageing 20 

Although arsenic in aerobic soils has a lower bioavailability and presents less of an 21 

immediate concern for crop uptake, aerobic soil can accumulate arsenic from human 22 

inputs, retain them for long periods of time, and release them when redox conditions 23 
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change (See Section 3.3). Human inputs of arsenic, as discussed in Section 3, are 1 

diverse; biosolids, sewage sludge, coal fly ash, poultry litter, industrial waste, arsenical 2 

pesticides and from irrigation with naturally arsenic-enriched groundwater. For 3 

aerobic soils, ageing – where binding stability of arsenic to soil particles increases 4 

over time, is a particularly important part of arsenic cycling. Factors controlling 5 

ageing of arsenic include soil type, organic matter content and arsenic species. Both 6 

inorganic and organic arsenic species are subject to ageing, with studies indicating a 7 

slow oxidation process from arsenite to arsenate over time107.  8 

 9 

5. Rhizosphere processes 10 

Processes occurring in the rhizosphere (the boundary layer of soil under the influence 11 

of plant roots) dramatically influence arsenic concentrations and bioavailability 12 

because they involve local alterations in redox potential, pH and organic matter 13 

content. Rhizosphere acidification occurs during iron uptake by all plant species 14 

except grasses, whereas grasses secrete chelating agents (phytosiderophores) to 15 

acquire iron96during cation uptake and charge balance, when protons are released 16 

into the rhizosphere. Plants release anywhere from 10 to 250 mg of carbon per gram 17 

of root tissue into the rhizosphere; about 10-40% of their total photosynthetically 18 

fixed carbon108, making the rhizosphere particularly rich in organic carbon compared 19 

to bulk soil, which in turn exerts an influence on arsenic solubility by stimulating 20 

microbially-mediated reductive dissolution of soil minerals. Large differences have 21 

been found in the arsenic concentration of rhizosphere soils compared with bulk 22 



 22 

soils in highly arsenic-contaminated areas, with higher concentrations of arsenic in 1 

rhizosphere soils compared to bulk soils109.  2 

 3 

In anaerobic soils, the iron plaque that develops on the submerged stem and roots 4 

of rice plants dominates rhizosphere dynamics of arsenic. In flooded environments 5 

such as paddy fields, plants oxygenate the rhizosphere through specialized tissues 6 

called aerenchyma, which are found in many aquatic plants and emergent 7 

macrophysics such as rice. This radial oxygen loss creates an oxidized layer around 8 

plant tissue that stimulates aerobic microbial activity and the oxidation of iron, which 9 

precipitates and forms a visible iron plaque on the root surface 110-114. Formation of 10 

an iron (oxyhydr)oxide plaque on root surfaces can alter the uptake of arsenic by rice, 11 

acting as a sorbent for excess nutrients such as ferrous iron (reduced iron) as well as 12 

arsenic and aluminum115. Rates of oxygen loss influence iron plaque formation 115, 13 

and vary between rice cultivars116, 117. However, sStudies conducted over the last forty 14 

years are inconsistent on whether iron plaque prevents or enhances arsenic uptake 15 

by plants111, and the hypothesis that arsenic influences the quality and amount of the 16 

iron plaque113. Profound differences in mineral composition and quantity of 17 

laboratory-created iron plaques has been demonstrated experimentally111, which may 18 

have contributed to these inconsistencies.  19 

 20 

5.1. Microbial activity 21 

Microbes directly and indirectly influence arsenic speciation in rhizosphere soil, and 22 

are widely considered to play a key role in arsenic biogeochemistry118. Under certain 23 
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nutrient-limited conditions, microbes actively weather minerals to access nutrients for 1 

cellular growth, which releases arsenic35, as well as creating abiotic conditions that 2 

induce changes in arsenic speciation via production of organic acids, polysaccharides 3 

and ligands. Soil microorganisms can strongly affect soil redox, regulating arsenic 4 

release into pore water119. A number of strains of bacteria have also been shown to 5 

contribute to the formation of arsenic minerals by using arsenic as a terminal 6 

electron acceptor, such as Desulfosporosinus auripigmentum120, Desulfovibrio strain 7 

Ben-RB121, Shewanella oneidensis122 and S. putrefaciences CN32123. These 8 

microorganisms also differ in their capabilities for liberating arsenic from specific 9 

arsenate-bearing minerals119.  10 

 11 

Microbial transformation can mobilize arsenic by converting inorganic to organic 12 

forms, including MMA and DMA124, 125. Plants translocate organic arsenicals from 13 

roots to the (frequently edible) above-ground parts more efficiently than inorganic 14 

arsenic126-128 (See Section 6), therefore microbial transformation to organic arsenicals 15 

can increase human dietary exposure.  16 

 17 

Plants, green algae and microbes can all enzymatically transform arsenic species124, 129, 18 

but methylated forms of arsenic detected in plants are a product of rhizosphere 19 

bacteria; plants cannot methylate arsenic78, 124, 130, 131. The genomes of more than 85 20 

arsenic-metabolizing archaea and bacteria have been sequenced for genes involved 21 

in arsenic metabolism132. In bacteria, archea and fungi, arsenic methylation is 22 

catalyzed by homologs of arsM, (See Section 4)124. Resistance to arsenite and 23 
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arsenate exists in nearly all microbes, which also confers the ability to transform 1 

arsenate into volatile arsine gases133, a particularly effective way of removing arsenic.  2 

 3 

Profiling the transcriptome, proteome and metabolome of arsenic contaminated soils 4 

offers way of understanding microbially-mediated rhizosphere arsenic processes132. 5 

This approach measures the presence and expression of specific genes, rather than 6 

attempting to isolate and study the microbes that carry them, 98% of which – it is 7 

estimated - do not grow in culture134. Microbially mediated arsenic metabolic 8 

processes that play a major role in arsenic cycling in agronomic systems include 9 

arsenite oxidation (via the aio genes), arsenate respiration (via the arr genes), 10 

arsenate reduction (via the ars genes) and arsenite methylation (via the arsM 11 

genes)135. Interested readers are referred to the recent excellent work of Andres and 12 

Bertin132 for a comprehensive review of this subject. Microbially mediated redox 13 

processes strongly influence arsenic uptake in rice, involving aioA, arsC and arrA 124, 14 

with pH emerging as an important factor in the distribution of microbes in paddy 15 

soils. Testing a variety of soils has shown that bacteria possessing the arsM gene for 16 

methylating arsenic are widespread and phylogenetically diverse, and even in paddy 17 

soils with low concentrations of arsenic, genes for arsenic metabolism are 18 

abundant124.     19 

 20 

6. Arsenic and crop plants 21 

Much of our understanding about the physiological mechanisms of arsenic uptake in 22 

plants comes from the study of a limited number of plant species. Called model 23 
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plant species, they are extensively studied, well described, easy to grow, and the 1 

results can be compared between studies. The understanding is that the information 2 

gained from studying model plants is applicable to other plant species. From a 3 

genetic perspective, orthologous genes exist in different plant species having evolved 4 

from a common ancestral gene, and they usually retain the same function. 5 

Characterization of arsenic-related genes in a model plant strongly suggests that 6 

they exist and perform similar functions in other species. Caveats to this are their 7 

levels of expression, which makes some plants more adept at accumulating arsenic 8 

than others. In this section, much of the knowledge gained on arsenic uptake and 9 

metabolism of plants comes from the study of mouse-eared pennycress (also called 10 

thale cress or rockcress) (Arabidopsis thaliana Heynh.) and rice (Oryza sativa L.); 11 

model plants with fully sequenced genomes. These species represent dicotyledonous 12 

(e.g. flowers, vegetables, deciduous trees) and monocotyledonous plant species (e.g. 13 

grasses, palm trees) respectively, thereby representing much of the edible crop 14 

species. An exception to this is the study of the arsenic hyperaccumulating fern 15 

(Chinese Brake fern, Pteris vittata), a seedless plant that is able to accumulate up to 16 

22,630 mg/kg (dry weight) arsenic in its fronds136.  17 

 18 

6.1. Phytotoxicity of arsenicals  19 

Arsenic is toxic to plants137. Despite lower acute human toxicity of the organic 20 

arsenicals (median lethal dose is 700-1,600 mg/kg and 700-2,600 mg/kg for MMA 21 

and DMA respectively compared to 10-20 mg/kg for inorganic forms)138 no one form 22 

of arsenic is consistently more toxic to plants139. Soybean yields are affected when 23 
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tissue arsenic levels exceed 1 mg/kg, and 4 mg/kg limits cotton yields140, whereas in 1 

barley tissue concentrations of 20 mg/kg inhibited growth141. Higher yield-limiting 2 

arsenic levels have been recorded in rice: 20-100 mg/kg in above ground biomass, 3 

and 1000 mg/kg in root tissue142. By contrast, potatoes (Solanum tuberosum L.) 4 

suffered no growth inhibition in soils containing 290 mg/kg arsenic71. In some plants 5 

species, organic forms are more toxic than inorganic, for example in rice (order of 6 

toxicity: MMA > arsenite > arsenate = DMA)143, and in smooth cordgrass (Spartina 7 

alterniflora Loisel) (DMA = MMA > arsenite > arsenate)144.  8 

 9 

Plants vary in their tolerance to arsenic, and the stress response differs for each 10 

arsenic species145-147. The chemical similarities between arsenate and phosphate 11 

means that arsenic can replace phosphate in biomolecules like ATP (adenosine 12 

triphosphate, a molecule used for intercellular energy transfer), with negative impacts 13 

on growth and metabolism148. In rice in particular, DMA and MMA induce 14 

straighthead disease (arsenic-associated straighthead disease), significantly lowering 15 

yield of certain rice varieties66. Straighthead is a physiological disorder of rice 16 

characterized by sterile florets, which remain upright at maturity instead of bending 17 

over under the weight of the filled grain. The exact cause of straighthead is unknown, 18 

but consistent flooding, low soil pH, high iron availability and high organic matter 19 

content have all been implicated in naturally-occurring straighthead disease66. 20 

Arsenic’s suspected role in straighthead comes from observations of more frequent 21 

outbreaks in rice grown in soil where arsenical herbicides such as monosodium 22 
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methanearsonate (MSMA) – used in cotton production in the USA – have been 1 

historically applied.  2 

 3 

6.2. Arsenic uptake mechanisms 4 

In magnitude, plants take up arsenicals from the soil in the order arsenite > arsenate 5 

> DMA > MMA149, 150), with the various arsenic species entering via different root 6 

membrane transport proteins in the root plasma membrane that allow ions and 7 

molecules to cross with varying levels of selectivity, or target specificity. Similarities in 8 

chemical structure between arsenate and phosphate, and between arsenite and silicic 9 

acid, govern their entry into root cells. Arsenate enters root cells through phosphate 10 

transporters (the Phosphate Transporter 1 family of proteins; PHT1) in both the 11 

model plant Arabidopsis thaliana151, 152 and in rice153-155 (Figure 1). In rice, Low Silicon 12 

1 (OsLsi1) and OsLsi2 are silicic acid transporters and arsenite, MMAV, and DMAV are 13 

among their unintended targets156, 157. The transporter that allows arsenite initial entry 14 

to root cells remains unidentified, but is hypothesized to be a member of the Plasma 15 

Membrane Intrinsic Protein family. Inside the root,These Nodulin 26-like Intrinsic 16 

Proteins (NIPs)158, which are members of the aquaporin water channel superfamily of 17 

proteins159 embedded in the exodermal cell membranes of rice roots, move arsenic 18 

from the soil into the vascular system for distribution to the stem and leaves. In rice, 19 

Low Silicon 1 (OsLsi1) and OsLsi2 are silicic acid transporters and arsenite, MMAV, 20 

and DMAV are among their unintended targets148, 149. OsLsi2 works in tandem with 21 

OsLsi1 to transport arsenite inward toward the xylem160, 161 (vascular tissue that 22 

conducts water and dissolved nutrients up from the roots). The arsenic uptake 23 
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specificity of OsLsi1 is arsenite >> MMA > DMA158. These bidirectional NIP transport 1 

proteins also efflux arsenite back in to the soil, but since OsLsi1 effluxes only 15-20% 2 

of the arsenite in roots cells162, there may be other unidentified arsenite efflux 3 

transporters contributing to this process.  4 

 5 

6.3. Arsenic transport and metabolism in plants 6 

Transport of arsenite into the xylem for delivery to the shoot is less well 7 

characterized than its uptake from the soil. Arsenic is transported to the grain mainly 8 

via the phloem126-128 (vascular tissue that conducts sugars and metabolic products 9 

from the leaves), by transporters in the nodes163, but their characterization is still in 10 

the early stages. Transporters for myo-inositol (Inositol Transporter 2 and 4); an 11 

important sugar for developing rice grains, also transport arsenite into the phloem 12 

companion cells164, 165. In Arabidopsis, AtINT2 or AtINT4 load about 45-64% arsenite 13 

into the grain166. The identity of transporters that move arsenite out of the phloem 14 

and into the grain are also unknown, but manipulating the target specificity of the 15 

INT genes might show promise in molecular genetic or plant breeding mitigation 16 

efforts as a way to prevent arsenite from reaching the grain. 17 

 18 

Once inside the cellDespite having a lower affinity for transporters into the plant than 19 

the inorganic forms, the rate of arsenic transport up towards shoot tissue is reversed, 20 

with organic forms arsenic species are more efficiently transported towards the shoot 21 

than inorganic forms149, 150 because they are not complexed by phytochelatins (PCs); 22 

sulphydryl-rich glutathione (GSH) polymers167, 168. Likewise, in broad beans (Vicia faba 23 
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L.) grown in a soil containing 90% inorganic arsenic, DMA and MMA were the 1 

dominant arsenic forms in the bean (68%)169. In root vegetables, carrot (Daucus 2 

carota L.) and beet (Beta vulgaris L.) grown on arsenic-contaminated soils, arsenic 3 

forms were predominantly inorganic, and but for beets in particular were not readily 4 

identified using the typical standards (arsenate, arsenite, MMA and DMA)170.  5 

 6 
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 1 

Figure 1. Generalized diagram of arsenic uptake, transport and metabolism in plants. 2 

GSH, glutathione; AR, arsenate reductase; GSSG, oxidized glutathione; PC, 3 

phytochelatin. Modified from Zhao et al.171 and Ma et al.172. 4 

 5 
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The arsenic species composition of rice grain is influenced by the arsenic transport 1 

rate of the particular cultivar173, 174. Rice cultivars currently grown in the USA have an 2 

arsenic speciation split approximately equally between inorganic arsenic and DMA, 3 

while cultivars grown in Bangladesh contain mostly inorganic arsenic174. While lower 4 

inorganic arsenic in rice grain seems favorable for avoiding human health effects, the 5 

assumed safety of DMA is contentious175, being based on acute toxicity data, and not 6 

on genotoxicity or carcinogenicity, which are equally relevant in long term safety 7 

considerations.  8 

 9 

Arsenic detoxification inside cells uses a multi-step process beginning with reduction 10 

of arsenate to arsenite using an arsenate reductase enzyme176, 177. In Arabidopsis, the 11 

protein High Arsenic Content1 (AtHAC1; also called Arsenate Reductase QTL1; ARQ1) 12 

reduces arsenate177. Even though arsenite is more toxic than arsenate158, 178, 179, it is 13 

hypothesized that ancestral organisms to plants were exposed almost exclusively to 14 

arsenite before atmospheric oxygen enabled arsenate formation180, and this 15 

mechanism persisted through natural selection. Arsenite is then complexed by PCs, 16 

and transported in to the vacuole167 via ATP Binding Cassette-type tranporters181, 182. 17 

This process depletes glutathione availability, rendering the plant more susceptible to 18 

other oxidative stresses, which negatively impactinhibits photosynthesis, pigment 19 

production, and the integrity of cell membranes183-186.  20 

 21 

7. Limiting arsenic uptake by crops  22 

7.1. Water management 23 
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Although the traditional method for cultivating rice involves flooding leveled, tilled 1 

fields before or shortly after planting germinated seedlings, this flooded soil is not a 2 

biological requirement of rice plants. Flooding is used for weed and vermin control, 3 

for mobilization of key nutrients such as iron, phosphate and zinc, and importantly, 4 

flooding discourages the buildup of root nematodes over multiple years of rice 5 

growth. As mentioned earlier, flooded conditions mobilize soil-bound arsenic 6 

through reductive dissolution of Fe (oxyhydr)oxides, and the reduction of arsenate to 7 

the more mobile arsenite187. Water management strategies that involve periods of 8 

oxic soil conditions can decrease arsenic uptake in rice by limiting dissolution of 9 

arsenic. Rice grown in non-flooded or aerobic conditions has a lower yield than 10 

intermittently or constantly flooded rice188-190. Intermittent flooding (flooding 11 

maintained until full tillering, followed by intermittent irrigation) is a promising 12 

management technique to reduce arsenic levels, and can potentially produce higher 13 

grain yields than either non-flooded or constantly flooded conditions191. However, 14 

oxic conditions increase cadmium concentrations in the grain when grown in acidic 15 

soils191-193, and cadmium is also a highly toxic metal. The observed increases in 16 

cadmium were also a cultivar-specific trait, but the increase in cadmium uptake 17 

between rice grown under aerobic conditions were approximately an order of 18 

magnitude greater than their flooded counterparts. Pot experiments suggest that 19 

water management strategies implemented during the heading period of rice growth 20 

(when the rice panicle has emerged from the stem and is fully visible, just before 21 

flowering) can regulate both arsenic and cadmium concentration in the grain190, 192. 22 

 23 
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7.2. Amendment and fertilization practices 1 

Soil amendment involves incorporating substances into the plow layer that either add 2 

missing nutrients, reduce the bioavailability of existing potentially toxic substances (to 3 

prevent crop uptake), or both. Soil amendments that have shown potential in 4 

reducing arsenic uptake by plants include iron-, and silica-based additives. The use of 5 

iron-based amendments increases in the concentration of free iron oxide in the soil, 6 

retarding the release of arsenite from the solid phase into soil solution, (mentioned 7 

in Section 4.1 and discussed in Section 5), whereas silica fertilization, inhibits arsenic 8 

uptake by competitive inhibition at the plant root surface while adding an essential 9 

nutrient. 10 

Zero valent iron powder (90% iron) and iron oxide (56% iron) incorporation 11 

prevented uptake of arsenic in to the grain of rice grown on soil containing 39.5 12 

mg/kg total arsenic by approximately 45%, and corresponded with a reduction in 13 

bioavailable arsenic in the soil194. Amendment with iron oxides (at a rate of 2%) was 14 

also more effective at reducing grain arsenic than phosphate amendment195. 15 

Amendments have also been used in combination with water management strategies 16 

to try and reduce both arsenic and cadmium concentrations in rice simultaneously193, 17 

without success. Reduction of arsenic in the grain was achieved with iron oxide 18 

addition and constant flooding, whereas cadmium reduction was achieved with 19 

converter furnace slag addition and rain water management (no irrigation after 20 

midseason drainage until harvest).  21 

 A combination of ethylenediaminetetraceetic acid ferric sodium salt (iron EDTA) and 22 

calcium peroxide was effective for reducing arsenic uptake by vegetable crops 23 
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(lettuce, Chinese cabbage and radish) from soils containing 14 mg/kg total arsenic196, 1 

again by increasing amorphous aluminum and iron oxides. It is likely that this this 2 

level of arsenic contamination would be deemed too high for commercial vegetable 3 

production, so these amendments may only be feasible for use in private vegetable 4 

gardens. Questions remain about whether iron oxide amendment application only 5 

temporarily reduces arsenic bioavailability197. In addition, the suitability for arsenic 6 

immobilization is highest at the lower soil pH range, and is strongly affected by soil 7 

phosphorus concentration, which strongly competes with arsenic. 8 

Rice plants take up high concentrations of silica, constituting up to 10% of dry 9 

matter in the straw and husk of the plant198. As mentioned earlier (Section 6) the 10 

silicon membrane transporter (Lsi1) is the main route of arsenite entry in to rice root 11 

cells, and provision of silicon causes competitive inhibition of arsenite uptake. 12 

Increasing silicon availability in the soil also reduces the expression of the Lsi1 13 

transporter in the plant, which further decreases the potential for arsenic uptake. . 14 

Fertilization of rice paddy soils with silicon is a potential mitigation strategy for 15 

preventing or reducing arsenic uptake by rice through competitive inhibition of 16 

arsenite uptake199. The use of synthetic silicon fertilizers, such as calcium silicate or 17 

silica gel is prohibitively expensive for smallholder farmers in developing countries, 18 

however reusing the silicon-rich parts of the rice plant that remain after harvesting 19 

and grain processing may provide a sustainable solution that also addresses the 20 

ongoing issue of silicon depletion of the soil198. Soil incorporation of fresh rice husks, 21 

or the ash that remains after burning the husk and straw for energy (which is a 22 

common practice in small holding farmsfor smallholder farmers), can provide silicon 23 
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without increasing arsenic or methane production and decreases either total or 1 

inorganic arsenic in rice grain200.    2 

Despite the potential of soil amendment with iron oxides, or silica to reduce arsenic 3 

bioavailability or prevent plant uptake of arsenic, the high cost of these amendments 4 

inevitably prevents their use, especially by smallholder farmers. Large rice producers 5 

in the US or Europe have not so far adopted widespread use of these soil 6 

amendments to reduce rice grain arsenic concentrations. It is reasonable to assume 7 

that use of such costly amendments would also drive up the cost of rice. It may also 8 

be that iron amendments are essentially untested in a diverse range of large-scale 9 

agricultural settings and their performance will vary from soil to soil. In non-rice 10 

agricultural systems arsenic is tightly bound to the solid phase; significant crop 11 

uptake from oxidized soil is likely to be a result of extreme contamination, in which 12 

case effective mitigation is restricted to redirecting land use away from edible crops. 13 

In systems subject to periodic flooding, improving drainage remains the best 14 

mitigation strategy. 15 

 16 

7.3. Mitigation using plant breeding approaches 17 

The development of crops that accumulate high levels of arsenic and yet remain 18 

healthy, while preventing arsenic from reaching the edible grain is thought to hold 19 

great potential as a strategy for reducing human exposure to dietary arsenic. The use 20 

of molecular genetics techniques such as alterations in gene expression 21 

characteristics, gene editing to alter target specificity, or alternately, using traditional 22 

plant breeding techniques are both tangible approaches. Both use knowledge of the 23 
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arsenic uptake and tolerance characteristics of plants to develop varieties with 1 

desired characteristics. These characteristics include lower arsenic uptake201, higher 2 

arsenite efflux202 and increased vacuolar arsenic sequestration203. For instance, many 3 

rice cultivars have now been screened to identify those that accumulate lower levels 4 

of arsenic in their grain and efforts are underway to identify the genes underlying 5 

this trait201, 204. Overexpressing Arabidopsis ABC-type transporters that sequester 6 

arsenite-PC complexes in the cell vacuole results in plants able to grow in otherwise 7 

toxic concentrations of arsenic182. Conversely, knocking out the function of the 8 

related rice ABC transporter OsABCC1 results in higher levels of grain arsenic. The 9 

OsABCC1 transporter limits arsenic transport to grains by sequestering arsenic in the 10 

vacuoles of the phloem companion cells directly connected to the grain. By 11 

combining what we have learned from the overexpression studies in Arabidopsis and 12 

the loss-of-function study in rice, overexpression of OsABCC1 can be used as a 13 

strategy to breed arsenic tolerance and low-arsenic accumulating rice cultivars. 14 

Another promising strategy is based on expressing the arsenate efflux transporter 15 

from yeast (Saccharomyces cerevisiae) in rice, which can reduce arsenic accumulation 16 

in brown rice by 20%. A less successful idea to methylate sodium arsenite to DMA by 17 

expressing an algal arsM gene in Arabidopsis resulted in lethal phytotoxicity205, 18 

suggesting that arsenic methylation in plants can only be an effective detoxification 19 

strategy if volatile arsines were are the end point of the methylation. 20 

 21 

8. Conclusions 22 
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The discovery of arsenic in staple foods, beverages and other products has increased 1 

awareness and stimulated research on the sources and the processes involved. The 2 

information brought together here illustrates the wide diversity of natural and human 3 

processes that can contribute arsenic to the soil and the numerous geochemical and 4 

biological processes that can moveinfluence the movement of arsenic into the food 5 

supply.  6 

It is clear there must be strategies for protecting preventing human health to arsenic 7 

exposure, that operate in both the short term – to protect consumers from existing 8 

contamination – and in the long term,; to prevent further contamination. This 9 

requires government regulation on the permissible levels of arsenic food, with lower 10 

levels for infant foods (see Nachman et al, this issue), which must work in tandem 11 

with long term goals to remediate address arsenic in agricultural soils, actively 12 

prevent further inputs and identify contaminated areas. Our recommendations are 13 

that the information in this review is used to inform a reconsideration and a 14 

unification of regulations on the action levels of agricultural soil arsenic, which in the 15 

USA for example, exist only at the state level, vary widely from state to state, and 16 

have no formal channels of enforcement. We recommend that educating the 17 

community and garnering their support and involvement for lowering exposure to 18 

arsenic through food is an approach already shown to hold enormous potential. 19 

Direct involvement of the commercial rice growing community in research and 20 

development of arsenic mitigation strategies and amendments is needed. 21 

Community-based participatory research should extend to the agricultural community, 22 

leading to partnerships that will make longer-term field-scale testing accessible. 23 



 38 

Much effort is given to short-term, greenhouse-scale testing of amendment 1 

formulations that will ultimately be too expensive, impractical, or ineffective in the 2 

long term. Feasibility should be the first consideration in arsenic mitigation research. 3 

Community outreach efforts targeted to commercial growers or the home gardener 4 

specifically could must raise awareness of the significance and potential impacts of 5 

the former land uses of the land, encouraging testing for the presence of arsenic in 6 

the soil and educating growers on the kinds of crops shown to accumulate arsenic in 7 

their edible parts. Information gathering on former arsenic input into the soil from 8 

pesticides and from proximity to various waste sites is of paramount importance to 9 

this effort, and will allow monitoring to be targeted to where it is needed most. This 10 

information needs to be accessible to everyone, everywhere; currently there is no 11 

readily available source of soil quality information at a sufficient resolution to inform 12 

commercial producers or homeowners. Going forward, management and remediation 13 

of arsenic contaminated soils is essential both for human health and food security, 14 

and innovative technologies are urgently needed that will expedite this process. 15 

Innovative solutions such as the use of rice husks to add silicon to the soil to offset 16 

arsenic uptake, and the use of cultivars with low-arsenic accumulating characteristics 17 

point the way forward for sustainable solutions.  18 
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Abstract 1 

This review is on arsenic in agronomic systems, and covers processes that influence 2 

the entry of arsenic into the human food supply. The scope is from sources of 3 

arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere 4 

processes that control arsenic speciation and availability, through to mechanisms of 5 

uptake by crop plants and potential mitigation strategies. This review makes a case 6 

for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to 7 

work toward a long-term solution to the presence of arsenic in agronomic systems. 8 

The past two decades have seen important advances in our understanding of how 9 

biogeochemical and physiological processes influence human exposure to soil arsenic, 10 

and this must now prompt an informed reconsideration and unification of 11 

regulations to protect the quality of agricultural and residential soils.  12 

 13 

1. Introduction 14 

Consumption of staple foods such as rice, beverages such as apple juice, or 15 

vegetables grown in historically arsenic-contaminated soils are now recognized as 16 

tangible routes of arsenic exposure. The presence of elevated concentrations of 17 

arsenic in the soil is not a pre-requisite for dietary arsenic exposure; seen in the 18 

accumulation of arsenic by rice grown in uncontaminated soils1. When drinking-water 19 

arsenic concentrations are low, dietary arsenic can be a significant exposure2. 20 

Understanding the sources of arsenic to crop plants and the factors that influence 21 

them is key to reducing human exposure now and preventing exposure in future. In 22 

addition to the abundant natural sources of arsenic, there are a large number of 23 



 4 

industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly 1 

ash, glass manufacturing, pesticide application, wastewater sludge, pharmaceutical 2 

waste, livestock dips, smelting activities to phosphate fertilizers. Plant uptake of 3 

arsenic was previously assumed to be too low to merit setting limits for arsenic in 4 

food crops, but given that measurable biological effects occur in at arsenic levels 5 

below the current maximum contaminant level (MCL) for drinking water3, these low 6 

levels can still translate into significant exposures, particularly in children4 and 7 

presumably in adults who consume a lot of rice. In response, the World Health 8 

Organization (WHO) set an advisory MCL for inorganic arsenic in white (polished) rice 9 

of 0.2 mg/kg5 along with the limit of 10 µg/L in water, and the European Union set 10 

similar standards that included a lower MCL (0.1 mg/kg) for rice-containing baby 11 

foods6. Currently, dietary arsenic exposure is suspected to play a role in 12 

cardiovascular disease in adults7, and to disrupt the glucocorticoid system (involved 13 

in learning and memory) to those exposed in utero8. An in depth review of the 14 

current findings on the relationship between dietary arsenic exposure and human 15 

health is provided by Davis et al. (this issue). 16 

 17 

In the United States, regulations on arsenic are distributed to several agencies. The 18 

Environmental Protection Agency (EPA) developed the MCL for arsenic in drinking 19 

water (10 µg/L) in 2006; a level supported by the World Health Organization, Canada 20 

and the European Union. In the state of New Jersey (USA) the limit is 5 µg/L, and in 21 

Australia, 7 µg/L. Many other nations still adopt a level of 50 µg/L (Bahrain, 22 

Bangladesh, Bolivia, China, Egypt, India, Indonesia, Oman, Philippines, Saudi Arabia, 23 



 5 

Sri Lanka, Vietnam, Zimbabwe)9, with the exception of Mexico (35 µg/L). In the USA, 1 

The Food and Drug Administration (FDA) is responsible for setting action levels for 2 

arsenic in food, which includes apple and pear juice at 10 µg/L, in line with EPA’s 3 

drinking water MCL. In Canada, the Canadian Food Inspection Agency issued alerts 4 

on excessive arsenic in rice and pear products in 2014. Consistent with the European 5 

Commission’s limit for arsenic in rice used in food production for infants and young 6 

children, the FDA is proposing an action level of 0.1 mg/kg for inorganic arsenic in 7 

infant rice cereal10. Foods in Australia and New Zealand may not contain more than 1 8 

mg/kg dry mass of arsenic, and salt for food use must not contain more than 0.5 9 

mg/kg. Japan has a limit of 15 mg/kg of arsenic in paddy soils11. Likewise, Thailand 10 

has an agricultural arsenic soil quality standard of 3.9 mg/kg. Within the USA, states 11 

differ widely in their action levels for arsenic in soil, for instance New Jersey has a 12 

cleanup criterion of 20 mg/kg and Florida has a cleanup target level of 2.1 mg/kg 13 

and 12 mg/kg for industrial sites12.  14 

 15 

Arsenic occurs in food because it is present in soil and water and is taken up by 16 

plants. This review article brings together the latest scientific information on arsenic 17 

in agronomic systems, describing its sources in soils and the processes that influence 18 

the uptake of arsenic by crop plants. The intention of this review is to prompt a 19 

reconsideration and unification of government regulations on action levels for arsenic 20 

in agricultural soil; raise awareness of how both former and ongoing inputs of arsenic 21 

to soil can result in food contamination and impacts to human health and finally, to 22 
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indicate the way forward for mitigation strategies that safeguard valuable soil 1 

resources. 2 

 3 

2. Natural sources of arsenic in soil 4 

Below toxic concentrations, the higher the total soil arsenic concentration (the sum of 5 

all arsenic species, regardless of bioavailability) the higher the crop uptake of arsenic. 6 

This is true of anaerobic cultivation systems such as rice13-15, aerobic horticultural 7 

systems16 as well as conventional (aerobic) agriculture15. The global average total soil 8 

arsenic concentration is 5 mg/kg, (equivalent to parts per million), but there is large 9 

variation between and within geographical regions17. Where soils have formed on 10 

arsenic-rich bedrock, or downstream of these bedrocks, very high concentrations of 11 

natural arsenic can result. Concentrations of up to 4000 mg/kg arsenic have been 12 

measured in soils from the arsenopyrite belt (iron arsenic sulphide, FeAsS) in Styria, 13 

Austria18, for instance. There are approximately 568 known minerals that contain 14 

arsenic as a critical component19. Arsenic is present in many rock-forming minerals 15 

because it can chemically substitute for phosphorus (V), silicate (IV), aluminum (III), 16 

iron (III) and titanium (IV) in mineral structures. Global mapping data of total arsenic 17 

concentrations in topsoil is not available, although large-scale regional maps are 18 

available for soil arsenic concentrations in Europe20 and the USA 21. European data 19 

predicts that most soils range < 7.5 - 20 mg/kg arsenic, with a median of 6 mg/kg20. 20 

This prediction comes from block regression-kriging; a spatial prediction technique 21 

based on regressing soil arsenic concentrations against auxiliary variables, and is 22 

useful because it uses a particularly high resolution (block size of 5 km2). On a 23 
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continental scale, large zones of soils with approximately 30 mg/kg arsenic have 1 

been found in southern France, the north-eastern Iberian Peninsula and south-west 2 

England, with the two latter being zones of extensive natural mineralization 3 

associated with base and precious metal mining activities. The United State 4 

Geological Survey (USGS) soil sampling of the contiguous USA reports a mean soil 5 

arsenic concentration of approximately 5 mg/kg with 5 and 95 percentile values of 6 

approximately 1.3 and 13 mg/kg respectively22. Large regional patterns are apparent 7 

in the data, for example the soils of New Hampshire have soil arsenic concentrations 8 

of approximately 10 mg/kg arsenic, and Florida, 3.5 mg/kg. The sampling density 9 

goal for the USA surface soils and stream sediments database is 1 per 289 km2 23, but 10 

is currently at only 1 sample per 1600 km2. This contrasts with smaller regional 11 

surveys such as the recently published Tellus database for Northern Ireland that has 12 

a sampling density of 2 km2 24 (median total soil arsenic concentration 8.7 mg/kg). At 13 

this sampling density, fine-scale data for factors shown to affect soil arsenic, such as 14 

bedrock type, altitude and organic matter for instance, can be observed, providing 15 

the opportunity to make predictions about arsenic bioavailability and mobility.  16 

 17 

Soil or sediment arsenic concentrations are the result of the complex and dynamic 18 

interplay between inputs and outputs25. Natural sources of arsenic to agronomic 19 

catchments are dominated by bedrock weathering (mechanical, chemical and 20 

biological) and depositional inputs, with the ultimate sinks at the base of catchments 21 

often being a significant distance from sources26. Outputs include leaching into water 22 

bodies (vertically and horizontally), soil erosion25 and biovolatilization27. In arid 23 
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regions surface evaporation of water can lead to arsenic enrichment from the draw 1 

up of subsurface water25 and from waters used in crop irrigation28. Mass-balances 2 

(accounting for all inputs and outputs for a particular ecosystem) are rarely 3 

conducted for arsenic fluxes within catchment areas, but a good example is from a 4 

mining-impacted catchment area29, where chemical weathering, followed by 5 

mechanical weathering dominated arsenic inputs, which were primarily from 6 

arsenopyrite. Similarly, in a gold-mining region, weathering contributed an estimated 7 

95% of the arsenic30. In a forested catchment area, where atmospheric arsenic inputs 8 

were the dominant source to highly organic soil (soils with more than 10% organic 9 

matter), inputs of arsenic via precipitation were ~6 g/ha/y31, and organic soils were a 10 

net source of arsenic, while mineral soils (less than 10% organic matter) were a sink. 11 

This agrees with depositional inputs of arsenic measured in the UK, which ranged 12 

from ~1 to ~10 g arsenic/ha/y32. UK regional scale maps show that arsenic 13 

deposition is highest at altitude and in the west of the country; the least polluted 14 

regions with air masses originating in the Atlantic. This suggests a marine source of 15 

arsenic. Depositional maps relate well to soil arsenic maps such as in maps of 16 

Northern Ireland and England33 that show highest arsenic concentrations in peat soils 17 

at higher altitude, along with bedrock geological anomalies. Peat soils at higher 18 

altitude are sinks for arsenic, and become sources if the peat is mineralized or 19 

eroded. The topic of upland organic soils acting as sinks and sources of arsenic is 20 

receiving more research attention34, and could be important on a regional scale as a 21 

source of arsenic to downstream sediments.  22 

 23 
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In large catchment areas of continental importance, such as the deltas that form to 1 

the south and east of the Himalayas, plate tectonic-derived mechanical weathering is 2 

thought to be the most important source of arsenic. One theory is that the 3 

mechanical weathering caused by Pleistocene tectonic uplift in the Himalayas is the 4 

key to understanding why arsenic is so elevated in Holocene aquifers, such as those 5 

of SE Asia, and in the glacial tills of Europe and North America26. Mechanical 6 

weathering of bedrock exposes previously inaccessible mineral surfaces, and the finer 7 

grinding leads to enhanced surface areas for chemical and microbial weathering to 8 

take place, causing greater solubilisation of arsenic25, 26, 35. Chemical and microbial 9 

weathering can take place at or near the source, or in sediment sinks. For instance, 10 

bacteria isolated from Bay of Bengal aquifers can mobilize arsenic from apatite35 (See 11 

Section 5). Invariably, the arsenic loadings into soil will be dependent on arsenic in 12 

the bedrock, and the extent of the weathering of that bedrock-derived material along 13 

the route from source to sink. Soils with basalt bedrock had the lowest median 14 

arsenic content, while those with psammite, semipelite, and lithic arsenite bedrocks 15 

had the highest. Interpretation of such fine-scale mapping can ultimately lead to 16 

predictions of soil arsenic concentrations where detailed maps are not available. 17 

Combined with an understanding of soil chemistry, this will enhance the ability to 18 

predict elevated concentrations of arsenic in crops36.   19 

 20 

3. Anthropogenic sources of arsenic to soil 21 

Many anthropogenic activities have increased soil arsenic concentrations above the 22 

natural, background levels mentioned in Section 2 above, and they have the potential 23 
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to increase the arsenic concentration in food. This is especially the case in the USA 1 

where the widespread use of arsenic-based herbicides, pesticides and livestock 2 

antibiotics throughout the 20th century has ultimately increased the arsenic 3 

concentrations of current productive USA agricultural soils37-39. 4 

 5 

3.1. Base and precious metal mining 6 

The dominant mineral source of arsenic is thought to be pyrite (iron sulfide, FeS2)
40, 7 

an economically important ore deposit. High arsenic concentrations are found in 8 

many oxide minerals and hydrous metal oxides, either part of their structure or as 9 

sorbed and occluded species41. Iron oxides accumulate arsenic up to concentrations 10 

of several weight percent (1 weight % being equivalent to 10,000 mg/kg), and 11 

arsenic tends to bind to iron (III) (hydr)oxides whenever they are present. Arsenic is 12 

found predominantly as arsenopyrite but also can occur as orpiment (arsenic 13 

trisulphide As2S3), realgar (α-As4S4) and other arsenic sulfide minerals42, 43. Arsenic is a 14 

byproduct of most mining operations and is present at high concentrations in the 15 

mine waste, and, because arsenic sulfides are particularly prone to oxidation in 16 

surface environments, in mining wastewaters42, 44. Arsenic can constitute 1% or more 17 

of the ore and solid waste, and wastewaters and impacted streams often contain 18 

dissolved arsenic concentrations ranging from 0.01 to over 10 mg/L. Because mining 19 

and smelting operations are localized, arsenic contamination of soils exists around 20 

the mine site with the concentration decreasing with distance from the source. 21 

Windblown dispersion of fine particulate material is a particular problem, spreading 22 

contamination greater distances from the mine site. This fine material - which is not 23 
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completely removed by washing16 - can directly contaminate plant material; 1 

especially leafy material with high surface area. This presents a tangible risk to 2 

residents and home gardeners in the vicinity of areas with significant surface soil 3 

arsenic contamination. A comparison of arsenic concentrations in vegetables grown 4 

in SW England (the site of historic mining activities) with those from a pristine site in 5 

NW Scotland found a generally good correlation between total plant arsenic and soil 6 

arsenic concentrations. Increased arsenic concentrations were measured in produce 7 

from SW England where soil arsenic concentrations ranged from 120 – 1130 mg/kg. 8 

Arsenic concentrations were high in leafy greens (kale, spinach, lettuce) and some 9 

unpeeled vegetables (potatoes, swedes, carrots) were higher than when peeled, 10 

which, in both cases, points to contamination from windblown soil particles and soil 11 

adhesion to below ground biomass, rather than from root uptake. In this particular 12 

study, the majority of arsenic was present as the inorganic form16.  Similar results 13 

were obtained from home gardens near the Iron King Mine Superfund Site in Arizona, 14 

USA45, 46. Here the tailings had arsenic concentrations of 3,710 mg/kg and residential 15 

soil sampled adjacent to the site ranged from 120 – 633 mg/kg. Edible plant tissue 16 

concentrations ranged from < 0.01 – 1.96 mg/kg (plant concentrations are expressed 17 

as dry weight throughout), and were generally positively correlated with soil arsenic 18 

concentrations. Leafy and high surface area vegetables such as lettuce, kale, broccoli 19 

and cabbage accumulated higher arsenic concentrations than beans, tomatoes, 20 

cucumbers and peppers. Arsenic in mine-affected vineyard soils in Italy ranged from 21 

4 – 283 mg/kg and positive correlations were observed between soil concentrations 22 

and arsenic levels in vine leaves and grapes, however, levels in wine were low (< 1.62 23 
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µg/L)47.  In the Hunan province, China, the high levels of inorganic arsenic in rice 1 

have been traced to mining activities in the area48-50. 2 

 3 

3.2. Coal combustion for energy 4 

The concentration of arsenic in USA coal ranges from 1 – 71 mg/kg with an average 5 

concentration of 24 mg/kg51. Fly ash, the major byproduct of the coal combustion 6 

process, consists of fine particles that are driven out with the flue gases, and is a 7 

major source of arsenic to the wider environment. Coal ash is one of the most 8 

abundant of industrial wastes; close to 130 million tons52 of coal fly was generated in 9 

the USA in 2014, with 100 million tons estimated from the European Union in 201153. 10 

Arsenic concentrates in the fly ash during combustion of coal for energy; the median 11 

arsenic concentration in USA fly ash is 71 mg/kg54. Fly ash is often sluiced into 12 

settling basins, and because arsenic in fresh ash is quite soluble, wastewater arsenic 13 

concentrations can consequently be quite high. Arsenic can build up in the 14 

sediments of coal fly ash settling basins and reach concentrations of over 1000 15 

mg/kg. Catastrophic failures of these setting basins have caused severe 16 

environmental problems and contaminated surface waters with arsenic55. There is a 17 

well-founded concern that arsenic from coal combustion wastes can contaminate soil 18 

and enter the food supply. The use of coal fly ash as a soil amendment can lead to 19 

elevated arsenic concentrations in crops (as well as boron, selenium and 20 

molybdenum), although its lack of soil macronutrients and the potential for arsenic 21 

toxicity prevents the sole application of coal fly ash as a soil amendment56, 57. 22 

Formulating ash/organic waste mixtures that conform to USEPA regulations for total 23 
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arsenic application and meet soil and plant fertility requirements has been shown to 1 

safe and effective for agronomic use58. 2 

 3 

3.3. Pesticides 4 

Perhaps the largest anthropogenic input of arsenic to agricultural soils in the USA is 5 

from the agricultural use of arsenic-based pesticides and herbicides for most of the 6 

20th century. Calcium arsenate and lead arsenate were used extensively up to the 7 

1950s, mostly on orchard soils to combat the codling moth. At peak, 132,000 metric 8 

tons of each pesticide compound was applied annually between 1930-194037. In 9 

addition to apples, inorganic arsenic pesticides were used on a range of crops 10 

including essentially all fruit trees, vine berries, sweet potatoes, white potatoes, most 11 

vegetables and cotton37. Both lead and arsenate have long residence times in soils 12 

and high concentrations (often >100 mg/kg) of these two elements have been 13 

reported in old orchard soils in Washington59, North Carolina60, New Hampshire61, 14 

New Jersey62 and Virginia63. There is some evidence of greater mobility for arsenic 15 

(than lead)61, 64, and retention of both elements depends on soil type and other 16 

environmental factors but most of this legacy contaminant remains in the soil62. Use 17 

of lead arsenate decreased after 1950s and was finally banned in 1988. The organic 18 

arsenic compounds dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) 19 

were used as pesticides on cotton and herbicides for golf courses and right-of-ways 20 

until they too were withdrawn from use in 2013. High levels of MMA were reported 21 

in transient surface waters adjacent to a crop sprayer operation65. Legacy soil arsenic 22 

contamination resulting from organic arsenical pesticides plays a major role in 23 
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straighthead disease of rice66 (See Section 6.1). It may be that arsenical pesticides 1 

have leached to groundwater, as has been suggested for the Texas High Plains 2 

Aquifer67, although a study of the Ogallala aquifer in the High Plains in Texas found 3 

no evidence of anthropogenic arsenic in the groundwater68.  Similarly, there was no 4 

relationship between groundwater arsenic and past (inorganic) arsenic pesticide 5 

usage in a comprehensive study of New Hampshire groundwater sources69. About 6 

10%, depending on soil substrate, of monosodium methyl arsenate applied to sandy 7 

soils (simulated golf course greens) leached into percolating water. Demethylation 8 

and methylation occurred because both inorganic arsenic species and DMA were also 9 

detected in the percolating water70. As with mining-impacted soils, plants grown on 10 

soils that are high in arsenic from arsenical pesticide contamination take up higher 11 

levels of arsenic into their edible tissues, observed for example in potatoes71, carrots72 12 

and leafy green vegetables73, 74.  13 

 14 

Former pesticide application has been suggested be a factor in the presence of 15 

higher levels of total arsenic found in rice grown in the south-central regions of the 16 

USA75, 76 compared to other areas of the USA and to other countries, such as 17 

Bangladesh77. Evidence on varietal differences in arsenic uptake, speciation and 18 

distribution within rice grain (See also Section 6) strongly suggest that soil arsenic 19 

concentration is not the sole, nor particularly the main driver of this phenomenon.  20 

Factors likely to be influential include the differences in the soil microbial community 21 

composition between geographical regions that affect arsenic methylation, 22 

considering that plants themselves cannot methylate arsenic78. 23 
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 1 

3.4. Wood preservatives 2 

Chromated copper arsenate (CCA) is used as a wood preservative and was 3 

extensively used on decking and other residential usages until a voluntary 4 

manufacturer withdrawal in 2003. The primary health concern is for young children in 5 

direct contact with CCA-treated wood, but localized leaching of arsenic (as well as 6 

chromium and copper) also occurs to surrounding soil. Soil arsenic concentrations of 7 

37 – 250 mg/kg have been reported for soils sampled near CCA-treated utility poles 8 

(N=12)79 and mean arsenic concentrations for soils collected below decks and 9 

footbridges in Florida, USA was reported to be 28.5 mg/kg compared with a control 10 

concentration of 1.3 mg/kg (N= 65)80. Arsenic from CCA contaminated soils appears 11 

to be more bioavailable than from other anthropogenic sources to soil81.  12 

 13 

3.4. Organic manures 14 

Land application of sewage sludge (biosolids) in the USA is regulated by 15 

Environmental Protection Agency Part 503 Biosolids rule; which set the maximum 16 

arsenic concentration of the sludge at 75 mg/kg, an annual pollutant-loading rate of 17 

2.0 kilograms arsenic/hectare (kg/ha) and a cumulative pollution-loading rate of 41 18 

kg/ha over the lifetime of applications. Assuming a plow layer of 17 cm, application 19 

at the maximum annual rate implies an approximate 1.2 mg/kg maximum increase in 20 

soil arsenic, while the cumulative maximum loading rate could increase soil arsenic 21 

concentrations by approximately 24 mg/kg over the lifetime of application and 22 

assuming no loss from the soil profile. This cumulative loading rate of 24 mg/kg is 23 
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significant when considered against an average soil arsenic concentration of 5 mg/kg 1 

(See Section 2), however, relative to mine-impacted or inorganic arsenic pesticide 2 

impacted soils where arsenic concentrations are frequently > 100 mg/kg, it is of 3 

lesser concern. Also, sewage sludge is often high in aluminum and iron oxide phases, 4 

used in the flocculation process, which are efficient scavengers of inorganic arsenic 5 

thus lowering the arsenic bioavailability 82.   6 

 7 

Arsenic occurs in animal wastes primarily because of the former use of arsenic 8 

antibiotics in poultry and turkey feed; until 2015 four drugs, roxarsone, p-arsanilic 9 

acid, carbarsone and nitrosone, were regulated for use, with roxarsone being the 10 

most prevalent. As of 2016 all four of these compounds have all been withdrawn 11 

from use83. All four are organic arsenic compounds with an arsenate functional group 12 

attached to a benzene ring, and differ by other substituents on the ring. The 13 

compounds are not readily adsorbed or metabolized and so occur at concentrations 14 

up to 40 mg/kg in animal manures. This provides three points of entry to the human 15 

food chain; directly through arsenic in chicken and turkey meat38, 39, 84, from plant 16 

uptake after land application of manure, and runoff to surface water or groundwater. 17 

A number of studies have shown that these organic arsenic compounds can be 18 

degraded by both photolytic85 and microbial86 processes and that this degradation 19 

happens both during composting of stockpiled litter87, 88 and after land application89, 20 

90.  Long term application of poultry litter to Upper Coastal Plain soils increased soil 21 

arsenic concentrations from 2.7 to 8.4 mg/kg after 25 years of application91. Similar 22 

increases have been reported for other southern states of the USA92. There is 23 
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evidence to suggest that other soluble constituents of the litter, for example 1 

phosphate and dissolved organic carbon compounds, facilitate arsenic solubility and 2 

leaching89, 92, 93.  3 

 4 

3.5. Seaweed fertilizers 5 

Seaweeds can contain far higher concentrations of arsenic than crop plants: up to 6 

100 mg/kg (Taylor et al, this issue). In most cases the arsenic is present as 7 

arsenosugars, which are of low toxicity to humans (Taylor et al, this issue). However, 8 

as in the case of poultry litter, these compounds degrade (ultimately) to inorganic 9 

arsenic after land application94. Although seaweeds are a ‘niche’ soil amendment, 10 

their use agriculture is increasing and has been adopted by many organic farms as a 11 

soil fertilizer as well as a feed additive in organic dairy farming95. 12 

 13 

4. Biogeochemical cycling within terrestrial agronomic ecosystems 14 

Arsenic cycles within the soil surface and near-surface environment96, influenced by 15 

mineralogy, abiotic factors such as pH and redox potential (EH), and biotic factors 16 

such as microbially-mediated biomethylation.  17 

 18 

4.1. Redox regulation 19 

The most important biogeochemical step in the exposure of humans to arsenic is its 20 

release from soils and sediments into pore water; the water contained within soil 21 

pores and/or rock40. With the exception of extreme pH conditions (<4 or >9), or high 22 

concentrations of competing ions (e.g. phosphate, silicic acid or silicate97) the release 23 
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of arsenic from its strong bonds with soil particles depends upon redox potential 1 

(EH); the extent of aeration of the soil40. As EH falls, electron acceptors are depleted 2 

and anoxic conditions develop, causing iron oxides and oxyhydroxides to be reduced 3 

and dissolve, releasing sorbed arsenic into the soil solution98 where it can be taken 4 

up by plant roots, or leached into groundwater.  5 

 6 

Agronomic cropping systems can be divided with respect to arsenic mobilization on 7 

the basis of their redox status. Dominant biogeochemical processes influencing 8 

aerobic systems, specifically cereals, upland rice, fruit tree orchards, and community 9 

gardens, differ from those that dominate in anaerobic systems, predominantly in 10 

flooded rice paddies. In aerobic soils, arsenic speciation is predominantly arsenate 11 

(arsenic (V)), and is tightly bound to soil particles. Under anaerobic or flooded 12 

conditions, arsenic is reduced, and arsenite (arsenic (III)) is the dominant species40. 13 

Arsenite is less stably bound to aluminum hydroxides and aluminosilicate clay 14 

minerals in the soil than arsenate, for which they exhibit a much stronger binding 15 

preference40. With few exceptions (such as under conditions of sulfur release), 16 

transition of arsenic speciation from arsenate to arsenite is the most influential factor 17 

to arsenic bioavailability; and it is under anaerobic conditions where arsenic becomes 18 

an imminent human health concern. Influential biogeochemical processes in aerobic 19 

systems are ageing and accumulation of arsenic in soil, and in anaerobic systems 20 

reductive dissolution of iron-bearing minerals is the dominant process. 21 

 22 

4.2. Biotransformation to methylated and volatile species 23 
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Volatile arsenicals are arsenic species with a boiling point below 150˚C; the most 1 

volatile of which is arsine gas (AsH3), followed by monomethylarsine (MeAsH2), 2 

dimethylarsine (Me2AsH2) and finally completely methylated trimethylarsine (TMA).  3 

Volatile arsenic species can be formed either biotically – by fungi, bacteria and 4 

algae27, 99, 100or abiotically99. In natural systems arsines readily react with oxygen to 5 

form non-volatile oxidation products, with AsH3 most rapidly oxidized and 6 

challenging to detect in environmental samples. Oxidation of the arsine gases to 7 

inorganic arsenic species completes the arsenic cycle, with arsenic returned to the 8 

soil by rain or dry deposition101. 9 

Arsenic methylation in soils increases with decreasing redox potential102, and addition 10 

of organic matter. Increased arsenic volatilization was measured in soil after the 11 

addition of rice straw103, and animal waste products104. Inoculation of fungi 12 

(Penicillium and Ulocladium spp.) increased arsenic volatilization up to 8 fold in 13 

heavily contaminated and spiked soils105. Microbially mediated arsenic volatilization 14 

remains very inefficient, which hinders attempts to use it in soil remediation. Gaseous 15 

arsines are volatilized from arsenic contaminated soils into the atmosphere at very 16 

low rates: a microcosm study found 0.5 – 70 µg of arsenic kg-1 soil year-1 was 17 

volatilized from a range of soils and a range of arsenic levels27, and field 18 

measurements of arsenic volatilization are 1-2 orders of magnitude lower than those 19 

made in laboratory mesocosms 98.Genetic transformation of bacteria, using genes 20 

encoding for the protein product arsenite S-adenosyl methyltransferase (arsM) is an 21 

attempt to enhance arsenic methylation and volatilization. The arsM from 22 

Rhodopseudomonas palustris was expressed in Sphingomonas desiccabilis and 23 
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Bacillus idriensis grown in an aqueous system, resulting in a 10-fold increase in 1 

arsenic volatilization compared to the wild type strains. In a soil-based system, 2.2 – 2 

4.5% of arsenic was removed via microbially-mediated volatilization over an 3 

incubation period of 30 days106 (See also section 5.3). 4 

 5 

4.3. Changes in soil arsenic bioavailability due to ageing 6 

Although arsenic in aerobic soils has a lower bioavailability and presents less of an 7 

immediate concern for crop uptake, aerobic soil can accumulate arsenic from human 8 

inputs, retain them for long periods of time, and release them when redox conditions 9 

change (See Section 3.3). Human inputs of arsenic, as discussed in Section 3, are 10 

diverse; biosolids, sewage sludge, coal fly ash, poultry litter, industrial waste, arsenical 11 

pesticides and from irrigation with naturally arsenic-enriched groundwater. For 12 

aerobic soils, ageing – where binding stability of arsenic to soil particles increases 13 

over time, is a particularly important part of arsenic cycling. Factors controlling 14 

ageing of arsenic include soil type, organic matter content and arsenic species. Both 15 

inorganic and organic arsenic species are subject to ageing, with studies indicating a 16 

slow oxidation process from arsenite to arsenate over time107.  17 

 18 

5. Rhizosphere processes 19 

Processes occurring in the rhizosphere (the boundary layer of soil under the influence 20 

of plant roots) dramatically influence arsenic concentrations and bioavailability 21 

because they involve local alterations in redox potential, pH and organic matter 22 

content. Rhizosphere acidification occurs during iron uptake by all plant species 23 
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during cation uptake and charge balance, when protons are released into the 1 

rhizosphere. Plants release anywhere from 10 to 250 mg of carbon per gram of root 2 

tissue into the rhizosphere; about 10-40% of their total photosynthetically fixed 3 

carbon108, making the rhizosphere particularly rich in organic carbon compared to 4 

bulk soil, which in turn exerts an influence on arsenic solubility by stimulating 5 

microbially-mediated reductive dissolution of soil minerals. Large differences have 6 

been found in the arsenic concentration of rhizosphere soils compared with bulk 7 

soils in highly arsenic-contaminated areas, with higher concentrations of arsenic in 8 

rhizosphere soils compared to bulk soils109.  9 

 10 

In anaerobic soils, the iron plaque that develops on the submerged stem and roots 11 

of rice plants dominates rhizosphere dynamics of arsenic. In flooded environments 12 

such as paddy fields, plants oxygenate the rhizosphere through specialized tissues 13 

called aerenchyma, which are found in many aquatic plants and emergent 14 

macrophysics such as rice. This radial oxygen loss creates an oxidized layer around 15 

plant tissue that stimulates aerobic microbial activity and the oxidation of iron, which 16 

precipitates and forms a visible iron plaque on the root surface 110-114. Formation of 17 

an iron (oxyhydr)oxide plaque on root surfaces can alter the uptake of arsenic by rice, 18 

acting as a sorbent for excess nutrients such as ferrous iron (reduced iron) as well as 19 

arsenic and aluminum115. Rates of oxygen loss influence iron plaque formation 115, 20 

and vary between rice cultivars116, 117. Studies conducted over the last forty years are 21 

inconsistent on whether iron plaque prevents or enhances arsenic uptake by plants111, 22 

and the hypothesis that arsenic influences the quality and amount of the iron 23 
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plaque113. Profound differences in mineral composition and quantity of laboratory-1 

created iron plaques has been demonstrated experimentally111, which may have 2 

contributed to these inconsistencies.  3 

 4 

5.1. Microbial activity 5 

Microbes directly and indirectly influence arsenic speciation in rhizosphere soil, and 6 

are widely considered to play a key role in arsenic biogeochemistry118. Under certain 7 

nutrient-limited conditions, microbes actively weather minerals to access nutrients for 8 

cellular growth, which releases arsenic35, as well as creating abiotic conditions that 9 

induce changes in arsenic speciation via production of organic acids, polysaccharides 10 

and ligands. Soil microorganisms can strongly affect soil redox, regulating arsenic 11 

release into pore water119. A number of strains of bacteria have also been shown to 12 

contribute to the formation of arsenic minerals by using arsenic as a terminal 13 

electron acceptor, such as Desulfosporosinus auripigmentum120, Desulfovibrio strain 14 

Ben-RB121, Shewanella oneidensis122 and S. putrefaciences CN32123. These 15 

microorganisms also differ in their capabilities for liberating arsenic from specific 16 

arsenate-bearing minerals119.  17 

 18 

Microbial transformation can mobilize arsenic by converting inorganic to organic 19 

forms, including MMA and DMA124, 125. Plants translocate organic arsenicals from 20 

roots to the (frequently edible) above-ground parts more efficiently than inorganic 21 

arsenic126-128 (See Section 6), therefore microbial transformation to organic arsenicals 22 

can increase human dietary exposure.  23 



 23 

 1 

Plants, green algae and microbes can all enzymatically transform arsenic species124, 129, 2 

but methylated forms of arsenic detected in plants are a product of rhizosphere 3 

bacteria; plants cannot methylate arsenic78, 124, 130, 131. The genomes of more than 85 4 

arsenic-metabolizing archaea and bacteria have been sequenced for genes involved 5 

in arsenic metabolism132. In bacteria, archea and fungi, arsenic methylation is 6 

catalyzed by homologs of arsM, (See Section 4)124. Resistance to arsenite and 7 

arsenate exists in nearly all microbes, which also confers the ability to transform 8 

arsenate into volatile arsine gases133, a particularly effective way of removing arsenic.  9 

 10 

Profiling the transcriptome, proteome and metabolome of arsenic contaminated soils 11 

offers way of understanding microbially-mediated rhizosphere arsenic processes132. 12 

This approach measures the presence and expression of specific genes, rather than 13 

attempting to isolate and study the microbes that carry them, 98% of which – it is 14 

estimated - do not grow in culture134. Microbially mediated arsenic metabolic 15 

processes that play a major role in arsenic cycling in agronomic systems include 16 

arsenite oxidation (via the aio genes), arsenate respiration (via the arr genes), 17 

arsenate reduction (via the ars genes) and arsenite methylation (via the arsM 18 

genes)135. Interested readers are referred to the recent excellent work of Andres and 19 

Bertin132 for a comprehensive review of this subject. Microbially mediated redox 20 

processes strongly influence arsenic uptake in rice, involving aioA, arsC and arrA 124, 21 

with pH emerging as an important factor in the distribution of microbes in paddy 22 

soils. Testing a variety of soils has shown that bacteria possessing the arsM gene for 23 
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methylating arsenic are widespread and phylogenetically diverse, and even in paddy 1 

soils with low concentrations of arsenic, genes for arsenic metabolism are 2 

abundant124.     3 

 4 

6. Arsenic and crop plants 5 

Much of our understanding about the physiological mechanisms of arsenic uptake in 6 

plants comes from the study of a limited number of species. Called model plant 7 

species, they are extensively studied, well described, easy to grow, and the results 8 

can be compared between studies. The understanding is that the information gained 9 

from studying model plants is applicable to other plant species. From a genetic 10 

perspective, orthologous genes exist in different plant species that have evolved from 11 

a common ancestral gene, and they usually retain the same function. Characterization 12 

of arsenic-related genes in a model plant strongly suggests that they exist and 13 

perform similar functions in other species. Caveats to this are their levels of 14 

expression, which makes some plants more adept at accumulating arsenic than 15 

others. In this section, much of the knowledge gained on arsenic uptake and 16 

metabolism of plants comes from the study of mouse-eared pennycress (also called 17 

thale cress or rockcress) (Arabidopsis thaliana Heynh.) and rice (Oryza sativa L.); 18 

model plants with fully sequenced genomes. These species represent dicotyledonous 19 

(e.g. flowers, vegetables, deciduous trees) and monocotyledonous plant species (e.g. 20 

grasses, palm trees) respectively, thereby representing much of the edible crop 21 

species. An exception to this is the study of the arsenic hyperaccumulating fern 22 
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(Chinese Brake fern, Pteris vittata), a seedless plant that is able to accumulate up to 1 

22,630 mg/kg (dry weight) arsenic in its fronds136.  2 

 3 

6.1. Phytotoxicity of arsenicals  4 

Arsenic is toxic to plants137. Despite lower acute human toxicity of the organic 5 

arsenicals (median lethal dose is 700-1,600 mg/kg and 700-2,600 mg/kg for MMA 6 

and DMA respectively compared to 10-20 mg/kg for inorganic forms)138 no one form 7 

of arsenic is consistently more toxic to plants139. Soybean yields are affected when 8 

tissue arsenic levels exceed 1 mg/kg, and 4 mg/kg limits cotton yields140, whereas in 9 

barley tissue concentrations of 20 mg/kg inhibited growth141. Higher yield-limiting 10 

arsenic levels have been recorded in rice: 20-100 mg/kg in above ground biomass, 11 

and 1000 mg/kg in root tissue142. By contrast, potatoes (Solanum tuberosum L.) 12 

suffered no growth inhibition in soils containing 290 mg/kg arsenic71. In some plants 13 

species, organic forms are more toxic than inorganic, for example in rice (order of 14 

toxicity: MMA > arsenite > arsenate = DMA)143, and in smooth cordgrass (Spartina 15 

alterniflora Loisel) (DMA = MMA > arsenite > arsenate)144.  16 

 17 

Plants vary in their tolerance to arsenic, and the stress response differs for each 18 

arsenic species145-147. The chemical similarities between arsenate and phosphate 19 

means that arsenic can replace phosphate in biomolecules like ATP (adenosine 20 

triphosphate, a molecule used for intercellular energy transfer), with negative impacts 21 

on growth and metabolism148. In rice in particular, DMA and MMA induce 22 

straighthead disease (arsenic-associated straighthead disease), significantly lowering 23 
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yield of certain rice varieties66. Straighthead is a physiological disorder of rice 1 

characterized by sterile florets, which remain upright at maturity instead of bending 2 

over under the weight of the filled grain. The exact cause of straighthead is unknown, 3 

but consistent flooding, low soil pH, high iron availability and high organic matter 4 

content have all been implicated in naturally-occurring straighthead disease66. 5 

Arsenic’s suspected role in straighthead comes from observations of more frequent 6 

outbreaks in rice grown in soil where arsenical herbicides such as monosodium 7 

methanearsonate (MSMA) – used in cotton production in the USA – have been 8 

historically applied.  9 

 10 

6.2. Arsenic uptake mechanisms 11 

In magnitude, plants take up arsenicals from the soil in the order arsenite > arsenate 12 

> DMA > MMA149, 150), with the various arsenic species entering via different root 13 

membrane transport proteins in the root plasma membrane that allow ions and 14 

molecules to cross with varying levels of selectivity, or target specificity. Similarities in 15 

chemical structure between arsenate and phosphate, and between arsenite and silicic 16 

acid, govern their entry into root cells. Arsenate enters root cells through phosphate 17 

transporters (the Phosphate Transporter 1 family of proteins; PHT1) in both the 18 

model plant Arabidopsis thaliana151, 152 and in rice153-155 (Figure 1). In rice, Low Silicon 19 

1 (OsLsi1) and OsLsi2 are silicic acid transporters and arsenite, MMAV, and DMAV are 20 

among their unintended targets156, 157. These Nodulin 26-like Intrinsic Proteins 21 

(NIPs)158, which are members of the aquaporin water channel superfamily of 22 

proteins159 embedded in the exodermal cell membranes of rice roots, move arsenic 23 
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from the soil into the vascular system for distribution to the stem and leaves. OsLsi2 1 

works in tandem with OsLsi1 to transport arsenite inward toward the xylem160, 161 2 

(vascular tissue that conducts water and dissolved nutrients up from the roots). The 3 

arsenic uptake specificity of OsLsi1 is arsenite >> MMA > DMA158. These bidirectional 4 

NIP transport proteins also efflux arsenite back in to the soil, but since OsLsi1 5 

effluxes only 15-20% of the arsenite in roots cells162, there may be other unidentified 6 

arsenite efflux transporters contributing to this process.  7 

 8 

6.3. Arsenic transport and metabolism in plants 9 

Transport of arsenite into the xylem for delivery to the shoot is less well 10 

characterized than its uptake from the soil. Arsenic is transported to the grain mainly 11 

via the phloem126-128 (vascular tissue that conducts sugars and metabolic products 12 

from the leaves), by transporters in the nodes163, but their characterization is still in 13 

the early stages. Transporters for myo-inositol (Inositol Transporter 2 and 4); an 14 

important sugar for developing rice grains, also transport arsenite into the phloem 15 

companion cells164, 165. In Arabidopsis, INT2 or AtINT4 load about 45-64% arsenite 16 

into the grain166. The identity of transporters that move arsenite out of the phloem 17 

and into the grain are also unknown, but manipulating the target specificity of the 18 

INT genes might show promise in molecular genetic or plant breeding mitigation 19 

efforts as a way to prevent arsenite from reaching the grain. 20 

 21 

Despite having a lower affinity for transporters into the plant than the inorganic 22 

forms, organic arsenic species are more efficiently transported towards the shoot 23 
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than inorganic forms149, 150 because they are not complexed by phytochelatins (PCs); 1 

sulphydryl-rich glutathione (GSH) polymers167, 168. Likewise, in broad beans (Vicia faba 2 

L.) grown in a soil containing 90% inorganic arsenic, DMA and MMA were the 3 

dominant arsenic forms in the bean (68%)169. In root vegetables, carrot (Daucus 4 

carota L.) and beet (Beta vulgaris L.) grown on arsenic-contaminated soils, arsenic 5 

forms were predominantly inorganic, but for beets in particular were not readily 6 

identified using the typical standards (arsenate, arsenite, MMA and DMA)170.  7 

 8 
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 1 

Figure 1. Generalized diagram of arsenic uptake, transport and metabolism in plants. 2 

GSH, glutathione; AR, arsenate reductase; GSSG, oxidized glutathione; PC, 3 

phytochelatin. Modified from Zhao et al.171 and Ma et al.172. 4 

 5 
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The arsenic species composition of rice grain is influenced by the arsenic transport 1 

rate of the particular cultivar173, 174. Rice cultivars currently grown in the USA have an 2 

arsenic speciation split approximately equally between inorganic arsenic and DMA, 3 

while cultivars grown in Bangladesh contain mostly inorganic arsenic174. While lower 4 

inorganic arsenic in rice grain seems favorable for avoiding human health effects, the 5 

assumed safety of DMA is contentious175, being based on acute toxicity data, and not 6 

on genotoxicity or carcinogenicity, which are equally relevant in long term safety 7 

considerations.  8 

 9 

Arsenic detoxification inside cells uses a multi-step process beginning with reduction 10 

of arsenate to arsenite using an arsenate reductase enzyme176, 177. In Arabidopsis, the 11 

protein High Arsenic Content1 (HAC1; also called Arsenate Reductase QTL1; ARQ1) 12 

reduces arsenate177. Even though arsenite is more toxic than arsenate158, 178, 179, it is 13 

hypothesized that ancestral organisms to plants were exposed almost exclusively to 14 

arsenite before atmospheric oxygen enabled arsenate formation180, and this 15 

mechanism persisted through natural selection. Arsenite is then complexed by PCs, 16 

and transported in to the vacuole167 via ATP Binding Cassette tranporters181, 182. This 17 

process depletes glutathione availability, rendering the plant more susceptible to 18 

other oxidative stresses, which inhibits photosynthesis, pigment production, and the 19 

integrity of cell membranes183-186.  20 

 21 

7. Limiting arsenic uptake by crops  22 

7.1. Water management 23 
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Although the traditional method for cultivating rice involves flooding leveled, tilled 1 

fields before or shortly after planting germinated seedlings, flooded soil is not a 2 

biological requirement of rice plants. Flooding is used for weed and vermin control, 3 

for mobilization of key nutrients such as iron, phosphate and zinc, and importantly, 4 

flooding discourages the buildup of root nematodes over multiple years of rice 5 

growth. As mentioned earlier, flooded conditions mobilize soil-bound arsenic 6 

through reductive dissolution of Fe (oxyhydr)oxides, and the reduction of arsenate to 7 

the more mobile arsenite187. Water management strategies that involve periods of 8 

oxic soil conditions can decrease arsenic uptake in rice by limiting dissolution of 9 

arsenic. Rice grown in non-flooded or aerobic conditions has a lower yield than 10 

intermittently or constantly flooded rice188-190. Intermittent flooding (flooding 11 

maintained until full tillering, followed by intermittent irrigation) is a promising 12 

management technique to reduce arsenic levels, and can potentially produce higher 13 

grain yields than either non-flooded or constantly flooded conditions191. However, 14 

oxic conditions increase cadmium concentrations in the grain when grown in acidic 15 

soils191-193, and cadmium is also a highly toxic metal. The observed increases in 16 

cadmium were also a cultivar-specific trait, but the increase in cadmium uptake 17 

between rice grown under aerobic conditions were approximately an order of 18 

magnitude greater than their flooded counterparts. Pot experiments suggest that 19 

water management strategies implemented during the heading period of rice growth 20 

(when the rice panicle has emerged from the stem and is fully visible, just before 21 

flowering) can regulate both arsenic and cadmium concentration in the grain190, 192. 22 

 23 
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7.2. Amendment and fertilization practices 1 

Soil amendment involves incorporating substances into the plow layer that either add 2 

missing nutrients, reduce the bioavailability of existing potentially toxic substances (to 3 

prevent crop uptake), or both. Soil amendments that have shown potential in 4 

reducing arsenic uptake by plants include iron-, and silica-based additives. The use of 5 

iron-based amendments increases in the concentration of free iron oxide in the soil, 6 

retarding the release of arsenite from the solid phase into soil solution, (mentioned 7 

in Section 4.1 and discussed in Section 5), whereas silica fertilization inhibits arsenic 8 

uptake by competitive inhibition at the plant root surface while adding an essential 9 

nutrient. 10 

Zero valent iron powder (90% iron) and iron oxide (56% iron) incorporation 11 

prevented uptake of arsenic in to the grain of rice grown on soil containing 39.5 12 

mg/kg total arsenic by approximately 45%, and corresponded with a reduction in 13 

bioavailable arsenic in the soil194. Amendment with iron oxides (at a rate of 2%) was 14 

also more effective at reducing grain arsenic than phosphate amendment195. 15 

Amendments have also been used in combination with water management strategies 16 

to try and reduce both arsenic and cadmium concentrations in rice simultaneously193, 17 

without success. Reduction of arsenic in the grain was achieved with iron oxide 18 

addition and constant flooding, whereas cadmium reduction was achieved with 19 

converter furnace slag addition and rain water management (no irrigation after 20 

midseason drainage until harvest).  21 

 A combination of ethylenediaminetetraceetic acid ferric sodium salt (iron EDTA) and 22 

calcium peroxide was effective for reducing arsenic uptake by vegetable crops 23 
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(lettuce, Chinese cabbage and radish) from soils containing 14 mg/kg total arsenic196, 1 

again by increasing amorphous aluminum and iron oxides. It is likely that this this 2 

level of arsenic contamination would be deemed too high for commercial vegetable 3 

production, so these amendments may only be feasible for use in private vegetable 4 

gardens. Questions remain about whether iron oxide amendment application only 5 

temporarily reduces arsenic bioavailability197. In addition, the suitability for arsenic 6 

immobilization is highest at the lower soil pH range, and is strongly affected by soil 7 

phosphorus concentration, which strongly competes with arsenic. 8 

Rice plants take up high concentrations of silica, constituting up to 10% of dry 9 

matter in the straw and husk of the plant198. As mentioned earlier (Section 6) the 10 

silicon membrane transporter (Lsi1) is the main route of arsenite entry in to rice root 11 

cells, and provision of silicon causes competitive inhibition of arsenite uptake. 12 

Increasing silicon availability in the soil also reduces the expression of the Lsi1 13 

transporter in the plant, which further decreases the potential for arsenic uptake.  14 

Fertilization of rice paddy soils with silicon is a potential mitigation strategy for 15 

preventing or reducing arsenic uptake by rice through competitive inhibition of 16 

arsenite uptake199. The use of synthetic silicon fertilizers, such as calcium silicate or 17 

silica gel is prohibitively expensive for smallholder farmers in developing countries, 18 

however reusing the silicon-rich parts of the rice plant that remain after harvesting 19 

and grain processing may provide a sustainable solution that also addresses the 20 

ongoing issue of silicon depletion of the soil198. Soil incorporation of fresh rice husks, 21 

or the ash that remains after burning the husk and straw for energy (which is a 22 
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common practice for smallholder farmers), can provide silicon without increasing 1 

methane production and decreases either total or inorganic arsenic in rice grain200.    2 

Despite the potential of soil amendment with iron oxides or silica to reduce arsenic 3 

bioavailability or prevent plant uptake of arsenic, the high cost of these amendments 4 

inevitably prevents their use, especially by smallholder farmers. Large rice producers 5 

in the US or Europe have not so far adopted widespread use of these soil 6 

amendments to reduce rice grain arsenic concentrations. It is also reasonable to 7 

assume that use of expensive soil amendments would drive up the cost of rice. Their 8 

lack of use may also be attributable to the fact that iron amendments are essentially 9 

untested in a diverse range of large-scale agricultural settings and their performance 10 

will vary between soil types. In non-rice agricultural systems arsenic is tightly bound 11 

to the solid phase; significant crop uptake from oxidized soil is likely to be a result of 12 

extreme contamination, in which case effective mitigation is restricted to redirecting 13 

land use away from edible crops. In systems subject to periodic flooding, improving 14 

drainage remains the best mitigation strategy. 15 

 16 

7.3. Mitigation using plant breeding approaches 17 

The development of crops that accumulate high levels of arsenic and yet remain 18 

healthy, while preventing arsenic from reaching the edible grain is thought to hold 19 

great potential as a strategy for reducing human exposure to dietary arsenic. The use 20 

of molecular genetics techniques such as alterations in gene expression 21 

characteristics, gene editing to alter target specificity, or alternately, using traditional 22 

plant breeding techniques are both tangible approaches. Both use knowledge of the 23 
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arsenic uptake and tolerance characteristics of plants to develop varieties with 1 

desired characteristics. These characteristics include lower arsenic uptake201, higher 2 

arsenite efflux202 and increased vacuolar arsenic sequestration203. For instance, many 3 

rice cultivars have now been screened to identify those that accumulate lower levels 4 

of arsenic in their grain and efforts are underway to identify the genes underlying 5 

this trait201, 204. Overexpressing Arabidopsis ABC-type transporters that sequester 6 

arsenite-PC complexes in the cell vacuole results in plants able to grow in otherwise 7 

toxic concentrations of arsenic182. Conversely, knocking out the function of the 8 

related rice ABC transporter OsABCC1 results in higher levels of grain arsenic. The 9 

OsABCC1 transporter limits arsenic transport to grains by sequestering arsenic in the 10 

vacuoles of the phloem companion cells directly connected to the grain. By 11 

combining what we have learned from the overexpression studies in Arabidopsis and 12 

the loss-of-function study in rice, overexpression of OsABCC1 can be used as a 13 

strategy to breed arsenic tolerance and low-arsenic accumulating rice cultivars. 14 

Another promising strategy is based on expressing the arsenate efflux transporter 15 

from yeast (Saccharomyces cerevisiae) in rice, which can reduce arsenic accumulation 16 

in brown rice by 20%. A less successful idea to methylate sodium arsenite to DMA by 17 

expressing an algal arsM gene in Arabidopsis resulted in lethal phytotoxicity205, 18 

suggesting that arsenic methylation in plants can only be an effective detoxification 19 

strategy if volatile arsines are the end point of the methylation. 20 

 21 

8. Conclusions 22 
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The discovery of arsenic in staple foods, beverages and other products has increased 1 

awareness and stimulated research on the sources and the processes involved. The 2 

information brought together here illustrates the numerous geochemical and 3 

biological processes that influence the movement of arsenic into the food supply.  4 

It is clear there must be strategies for preventing arsenic exposure, that operate in 5 

both the short term – to protect consumers from existing contamination – and in the 6 

long term, to prevent further contamination. This requires government regulation on 7 

the permissible levels of arsenic food, with lower levels for infant foods (see 8 

Nachman et al, this issue), which must work in tandem with long term goals to 9 

address arsenic in agricultural soils, actively prevent further inputs and identify 10 

contaminated areas for mitigation. Our recommendations are that the information in 11 

this review is used to inform a reconsideration and a unification of regulations on the 12 

action levels of agricultural soil arsenic, which in the USA for example, exist only at 13 

the state level, vary widely from state to state, and have no formal channels of 14 

enforcement. We recommend that educating the community and garnering their 15 

support and involvement for lowering exposure to arsenic through food is an 16 

approach already shown to hold enormous potential. Direct involvement of the 17 

commercial rice growing community in research and development of arsenic 18 

mitigation strategies and amendments is needed. Much effort has been given to 19 

short-term, greenhouse-scale testing of amendment formulations that will ultimately 20 

be too expensive, impractical, or ineffective in the long term. Community-based 21 

participatory research should extend to the agricultural community, leading to 22 

partnerships that will make longer-term field-scale testing of mitigation strategies 23 
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accessible. Feasibility should be the first consideration in arsenic mitigation research. 1 

Community outreach efforts targeted to commercial growers or the home gardener 2 

specifically must raise awareness of the significance and potential impacts of former 3 

land uses, encouraging testing for the presence of arsenic in the soil and educating 4 

growers on crops shown to accumulate arsenic in their edible parts. Information 5 

gathering on former arsenic input into the soil from pesticides and from proximity to 6 

various waste sites is of paramount importance, and will allow monitoring and 7 

mitigation to be targeted to where it is needed most. Currently there is no readily 8 

available source of soil arsenic concentration information at a sufficient resolution to 9 

inform commercial producers or homeowners: this information needs to be 10 

accessible to everyone, everywhere. Going forward, management and remediation of 11 

arsenic contaminated soils is essential both for human health and food security, and 12 

innovative technologies are urgently needed that will expedite this process. 13 

Innovative solutions such as the use of rice husks to add silicon to the soil to offset 14 

arsenic uptake, and the use of cultivars with low-arsenic accumulating characteristics 15 

point the way forward for sustainable solutions.  16 

 17 
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