478 research outputs found
Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle
We integrate comeasured gene expression and DNA methylation (DNAme) in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants and eight physiological traits: height, waist, weight, waist-hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes. We find hundreds of genes and DNAme sites associated with fasting insulin, waist, and body mass index, as well as thousands of DNAme sites associated with gene expression (eQTM). We find that controlling for heterogeneity in tissue/muscle fiber type reduces the number of physiological trait associations, and that long-range eQTMs (>1 Mb) are reduced when controlling for tissue/muscle fiber type or latent factors. We map genetic regulators (quantitative trait loci; QTLs) of expression (eQTLs) and DNAme (mQTLs). Using Mendelian randomization (MR) and mediation techniques, we leverage these genetic maps to predict 213 causal relationships between expression and DNAme, approximately two-thirds of which predict methylation to causally influence expression. We use MR to integrate FUSION mQTLs, FUSION eQTLs, and GTEx eQTLs for 48 tissues with genetic associations for 534 diseases and quantitative traits. We identify hundreds of genes and thousands of DNAme sites that may drive the reported disease/quantitative trait genetic associations. We identify 300 gene expression MR associations that are present in both FUSION and GTEx skeletal muscle and that show stronger evidence of MR association in skeletal muscle than other tissues, which may partially reflect differences in power across tissues. As one example, we find that increased RXRA muscle expression may decrease lean tissue mass.Peer reviewe
Crossing the Dripline to 11N Using Elastic Resonance Scattering
The level structure of the unbound nucleus 11N has been studied by 10C+p
elastic resonance scattering in inverse geometry with the LISE3 spectrometer at
GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement
was done at the A1200 spectrometer at MSU. The excitation function above the
10C+p threshold has been determined up to 5 MeV. A potential-model analysis
revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44
+-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV,
(Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and
5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion
completely analogous to its mirror partner, 11Be. A narrow resonance in the
excitation function at 4.33 (+-0.05) MeV was also observed and assigned
spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR
Does Intensity Modulated Radiation Therapy (IMRT) prevent additional toxicity of treating the pelvic lymph nodes compared to treatment of the prostate only?
<p>Abstract</p> <p>Background</p> <p>To evaluate the risk of rectal, bladder and small bowel toxicity in intensity modulated radiation therapy (IMRT) of the prostate only compared to additional irradiation of the pelvic lymphatic region.</p> <p>Methods</p> <p>For ten patients with localized prostate cancer, IMRT plans with a simultaneous integrated boost (SIB) were generated for treatment of the prostate only (plan-PO) and for additional treatment of the pelvic lymph nodes (plan-WP). In plan-PO, doses of 60 Gy and 74 Gy (33 fractions) were prescribed to the seminal vesicles and to the prostate, respectively. Three plans-WP were generated with prescription doses of 46 Gy, 50.4 Gy and 54 Gy to the pelvic target volume; doses to the prostate and seminal vesicles were identical to plan-PO. The risk of rectal, bladder and small bowel toxicity was estimated based on NTCP calculations.</p> <p>Results</p> <p>Doses to the prostate were not significantly different between plan-PO and plan-WP and doses to the pelvic lymph nodes were as planned. Plan-WP resulted in increased doses to the rectum in the low-dose region ≤ 30 Gy, only, no difference was observed in the mid and high-dose region. Normal tissue complication probability (NTCP) for late rectal toxicity ranged between 5% and 8% with no significant difference between plan-PO and plan-WP. NTCP for late bladder toxicity was less than 1% for both plan-PO and plan-WP. The risk of small bowel toxicity was moderately increased for plan-WP.</p> <p>Discussion</p> <p>This retrospective planning study predicted similar risks of rectal, bladder and small bowel toxicity for IMRT treatment of the prostate only and for additional treatment of the pelvic lymph nodes.</p
Mitochondrial polymorphisms and susceptibility to type 2 diabetes-related traits in Finns
Mitochondria play an integral role in ATP production in cells and are involved in glucose metabolism and insulin secretion, suggesting that variants in the mitochondrial genome may contribute to diabetes susceptibility. In a study of Finnish families ascertained for type 2 diabetes mellitus (T2DM), we genotyped single nucleotide polymorphisms (SNPs) based on phylogenetic networks. These SNPs defined eight major haplogroups and subdivided groups H and U, which are common in Finns. We evaluated association with both diabetes disease status and up to 14 diabetes-related traits for 762 cases, 402 non-diabetic controls, and 465 offspring of genotyped females. Haplogroup J showed a trend toward association with T2DM affected status (OR 1.69, P =0.056) that became slightly more significant after excluding cases with affected fathers (OR 1.77, P =0.045). We also genotyped non-haplogroup-tagging SNPs previously reported to show evidence for association with diabetes or related traits. Our data support previous evidence for association of T16189C with reduced ponderal index at birth and also show evidence for association with reduced birthweight but not with diabetes status. Given the multiple tests performed and the significance levels obtained, this study suggests that mitochondrial genome variants may play at most a modest role in glucose metabolism in the Finnish population. Furthermore, our data do not support a reported maternal inheritance pattern of T2DM but instead show a strong effect of recall bias.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47596/1/439_2005_Article_46.pd
- …