9 research outputs found

    DNA extraction from formalin-fixed tissue: new light from the Deep-Sea

    Get PDF
    DNA samples were extracted from ethanol and formalin-fixed decapod crustacean tissue using a new method based on Tetramethylsilane (TMS)-Chelex. It is shown that neither an indigestible matrix of cross-linked protein nor soluble PCR inhibitors impede PCR success when dealing with formalin-fixed material. Instead, amplification success from formalin-fixed tissue appears to depend on the presence of unmodified DNA in the extracted sample. A staining method that facilitates the targeting of samples with a high content of unmodified DNA is provided

    Life in Data”—Outcome of a Multi-Disciplinary, Interactive Biobanking Conference Session on Sample Data

    Get PDF
    ©Sara Y. Nussbeck et al. 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The article attached is the publisher's pdf

    New application of air-dry techniques for studying Ephemeroptera and Plecoptera eggs by Scanning Electron Microscopy

    No full text
    8 páginas, 6 figuras.Hexamethyldisilizane (HMDS) and tetramethylsilane are organic compounds that are volatile at ambient temperature and which can therefore be used for air-drying biological samples for SEM studies. The techniques using these compounds provide results that are comparable with those obtained by critical point drying, but which involve a very simple process that saves time and money. Both techniques were applied to SEM studies of Ephemeroptera and Plecoptera eggs in order to assess their suitability as alternative methods to critical point drying for these kinds of biological material. The results show no morphological differences between eggs HMDS air-dried and critical point-dried.Peer reviewe

    A molecular perspective on ecological differentiation and biogeography of cyclotrichiid ciliates

    No full text
    Cyclotrichiids are of ecological and evolutionary interest by virtue of their importance in red tide formation, their highly divergent small subunit (SSU) ribosomal RNA (rRNA) genes, kleptoplastidy, and utility as indicators of eutrophication. However, only seven strains have had their SSU rRNA genes sequenced and their environmental diversity and distribution are largely unknown. We probed 67 globally dispersed freshwater column/sediment and soil DNA samples (eDNAs) and constructed 24 environmental gene libraries using polymerase chain reaction primers specific to an uncharacterised cyclotrichiid subgroup. We reveal a novel, globally ubiquitous freshwater clade comprising 25 genetiaclly distinct SSU ribosomal DNA (rDNA) sequences (SSU-types). Some identical SSU-types were detected at globally widely distributed sites. The SSU-types form four distinct phylogenetic clusters according to marine or non-marine provenance, suggesting at least one major marine-freshwater evolutionary transition within the cyclotrichiids. We used the same primers to sample intensively 18 sampling points in 13 closely situated lakes, each characterised by 14 environmental variables, and showed that molecular detection or non-detection of cyclotrichiids was most significantly influenced by levels of total phosphorus, dissolved organic carcon, and chlorophyll a. Within the subset of lakes in which cycloytrichiids were detected, closely related SSU-types differed in their ecological preferences to pH, total phosphorus, and sample depth
    corecore