331 research outputs found

    The Full Two-Loop R-parity Violating Renormalization Group Equations for All Minimal Supersymmetric Standard Model Couplings

    Full text link
    We present the full two-loop β\beta-functions for the minimal supersymmetric standard model couplings, extended to include R-parity violating couplings through explicit R-parity violation

    Light MSSM Higgs boson mass to three-loop accuracy

    Full text link
    The light CP even Higgs boson mass, Mh, is calculated to three-loop accuracy within the Minimal Supersymmetric Standard Model (MSSM). The result is expressed in terms of DRbar parameters and implemented in the computer program H3m. The calculation is based on the proper approximations and their combination in various regions of the parameter space. The three-loop effects to Mh are typically of the order of a few hundred MeV and opposite in sign to the two-loop corrections. The remaining theory uncertainty due to higher order perturbative corrections is estimated to be less than 1 GeV.Comment: 39 pages, 13 figures. v2: minor changes, typos fixe

    Two-loop RGEs with Dirac gaugino masses

    Get PDF
    The set of renormalisation group equations to two loop order for general supersymmetric theories broken by soft and supersoft operators is completed. As an example, the explicit expressions for the RGEs in a Dirac gaugino extension of the (N)MSSM are presented.Comment: 10 pages + 24 pages of RGEs in appendix; no figure

    Combining Anomaly and Z' Mediation of Supersymmetry Breaking

    Full text link
    We propose a scenario in which the supersymmetry breaking effect mediated by an additional U(1)' is comparable with that of anomaly mediation. We argue that such a scenario can be naturally realized in a large class of models. Combining anomaly with Z' mediation allows us to solve the tachyonic slepton problem of the former and avoid significant fine tuning in the latter. We focus on an NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level mu term, and present concrete models, which admit successful dynamical electroweak symmetry breaking. Gaugino masses are somewhat lighter than the scalar masses, and the third generation squarks are lighter than the first two. In the specific class of models under consideration, the gluino is light since it only receives a contribution from 2-loop anomaly mediation, and it decays dominantly into third generation quarks. Gluino production leads to distinct LHC signals and prospects of early discovery. In addition, there is a relatively light Z', with mass in the range of several TeV. Discovering and studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio

    (Extra)Ordinary Gauge/Anomaly Mediation

    Full text link
    We study anomaly mediation models with gauge mediation effects from messengers which have a general renormalizable mass matrix with a supersymmetry-breaking spurion. Our models lead to a rich structure of supersymmetry breaking terms in the visible sector. We derive sum rules among the soft scalar masses for each generation. Our sum rules for the first and second generations are the same as those in general gauge mediation, but the sum rule for the third generation is different because of the top Yukawa coupling. We find the parameter space where the tachyonic slepton problem is solved. We also explore the case in which gauge mediation causes the anomalously small gaugino masses. Since anomaly mediation effects on the gaugino masses exist, we can obtain viable mass spectrum of the visible sector fields.Comment: 24 pages, 10 figure

    When Anomaly Mediation is UV Sensitive

    Full text link
    Despite its successes---such as solving the supersymmetric flavor problem---anomaly mediated supersymmetry breaking is untenable because of its prediction of tachyonic sleptons. An appealing solution to this problem was proposed by Pomarol and Rattazzi where a threshold controlled by a light field deflects the anomaly mediated supersymmetry breaking trajectory, thus evading tachyonic sleptons. In this paper we examine an alternate class of deflection models where the non-supersymmetric threshold is accompanied by a heavy, instead of light, singlet. The low energy form of this model is the so-called extended anomaly mediation proposed by Nelson and Weiner, but with potential for a much higher deflection threshold. The existence of this high deflection threshold implies that the space of anomaly mediated supersymmetry breaking deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP

    LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

    Get PDF
    We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton mass splittings, occur not only in the left- but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br(τ~Rμχ10{\tilde\tau}_R \to \mu \chi^0_1)/Br(τ~Lμχ10{\tilde\tau}_L \to \mu \chi^0_1) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ+e+γ\mu^+ \to e^+ \gamma, A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure

    Precision Gauge Unification from Extra Yukawa Couplings

    Full text link
    We investigate the impact of extra vector-like GUT multiplets on the predicted value of the strong coupling. We find in particular that Yukawa couplings between such extra multiplets and the MSSM Higgs doublets can resolve the familiar two-loop discrepancy between the SUSY GUT prediction and the measured value of alpha_3. Our analysis highlights the advantages of the holomorphic scheme, where the perturbative running of gauge couplings is saturated at one loop and further corrections are conveniently described in terms of wavefunction renormalization factors. If the gauge couplings as well as the extra Yukawas are of O(1) at the unification scale, the relevant two-loop correction can be obtained analytically. However, the effect persists also in the weakly-coupled domain, where possible non-perturbative corrections at the GUT scale are under better control.Comment: 26 pages, LaTeX. v6: Important early reference adde
    corecore