
J. Chem. Phys. 149, 114503 (2018); https://doi.org/10.1063/1.5042140 149, 114503

© 2018 Author(s).

Effects of random pinning on the potential
energy landscape of a supercooled liquid
Cite as: J. Chem. Phys. 149, 114503 (2018); https://doi.org/10.1063/1.5042140
Submitted: 30 May 2018 . Accepted: 24 August 2018 . Published Online: 18 September 2018

S. P. Niblett , V. K. de Souza, R. L. Jack , and D. J. Wales 

ARTICLES YOU MAY BE INTERESTED IN

Configurational entropy of polydisperse supercooled liquids
The Journal of Chemical Physics 149, 154501 (2018); https://doi.org/10.1063/1.5040975

Stress correlations in glasses
The Journal of Chemical Physics 149, 104107 (2018); https://doi.org/10.1063/1.5041461

Configurational entropy of glass-forming liquids
The Journal of Chemical Physics 150, 160902 (2019); https://doi.org/10.1063/1.5091961

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519848081&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c13348bd5a0f79fb8ad524aee0a7dc1c899b85bf&location=
https://doi.org/10.1063/1.5042140
https://doi.org/10.1063/1.5042140
https://aip.scitation.org/author/Niblett%2C+S+P
http://orcid.org/0000-0003-0337-0464
https://aip.scitation.org/author/de+Souza%2C+V+K
https://aip.scitation.org/author/Jack%2C+R+L
http://orcid.org/0000-0003-0086-4573
https://aip.scitation.org/author/Wales%2C+D+J
http://orcid.org/0000-0002-3555-6645
https://doi.org/10.1063/1.5042140
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5042140
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5042140&domain=aip.scitation.org&date_stamp=2018-09-18
https://aip.scitation.org/doi/10.1063/1.5040975
https://doi.org/10.1063/1.5040975
https://aip.scitation.org/doi/10.1063/1.5041461
https://doi.org/10.1063/1.5041461
https://aip.scitation.org/doi/10.1063/1.5091961
https://doi.org/10.1063/1.5091961


THE JOURNAL OF CHEMICAL PHYSICS 149, 114503 (2018)

Effects of random pinning on the potential energy landscape
of a supercooled liquid

S. P. Niblett,1,a) V. K. de Souza,1,b) R. L. Jack,1,2 and D. J. Wales1,c)
1University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 30 May 2018; accepted 24 August 2018; published online 18 September 2018)

We use energy landscape methods to investigate the response of a supercooled liquid to random
pinning. We classify the structural similarity of different energy minima using a measure of overlap.
This analysis reveals a correspondence between distinct particle packings (which are characterised
via the overlap) and funnels on the energy landscape (which are characterised via disconnectivity
graphs). As the number of pinned particles is increased, we find a crossover from glassy behavior at
low pinning to a structure-seeking landscape at high pinning, in which all thermally accessible minima
are structurally similar. We discuss the consequences of these results for theories of randomly pinned
liquids. We also investigate how the energy landscape depends on the fraction of pinned particles,
including the degree of frustration and the evolution of distinct packings as the number of pinned
particles is reduced. Published by AIP Publishing. https://doi.org/10.1063/1.5042140

I. INTRODUCTION

A structural glass is a material that is mechanically solid
but has an amorphous, liquid-like microstructure.1 Glasses are
normally produced by rapidly supercooling a liquid, which
causes the constituent particles to move increasingly slowly
until the system becomes solid on the experimental time
scale. Several theories aim to describe this dynamical slowing
down2–4 by proposing that cooling the system brings it close to
a critical point at which structural relaxation stops completely.
This critical point might be thermodynamic in origin,2,5 or a
purely dynamical effect, and the associated singularity might
occur at some finite temperature2,4 or in a limit where the
temperature tends to zero.3

Cammarota and Biroli6 proposed that by gradually pin-
ning (immobilising) some of the particles in a supercooled
liquid, one might observe a singularity at which structural
relaxation of the remaining (unpinned) particles stops com-
pletely. This has been termed the random-pinning glass tran-
sition (RPGT). The associated singularity takes place at finite
temperature and shares many features with the singularity that
occurs in random first-order transition (RFOT) theory.2 In both
the RPGT and RFOT transitions, slow (glassy) dynamics orig-
inates in a reduction of the entropy: a supercooled liquid may
adopt many different amorphous structures, but a glass is a
system that is localised on the observation time scale into a
single metastable state, corresponding to a group of potential
energy minima.

The theoretical proposal of Ref. 6 has its roots in mean-
field theory, and it is not clear whether these predictions are
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valid in physical (three-dimensional) systems. Several numeri-
cal studies have investigated the effects of random pinning7–15

but have not yet established (or ruled out) the existence of
an RPGT. Performing this test and accurately characterising
the RPGT would require a comprehensive finite-size scal-
ing analysis. However, the corresponding calculations con-
verge slowly, and the size-scaling approach is currently very
expensive.

In this work, we use geometry optimisation methods16 to
explore the potential energy landscape (PEL) of a randomly
pinned glassy system. Analysis of the PELs of glasses has a
long history.17–26 A key advantage of using this approach to
study the RPGT is that geometry optimisation methods, such
as basin-hopping (BH) global optimisation27,28 and discrete
path sampling (DPS),29,30 can treat activated relaxation events
with arbitrarily high energy barriers. Exploring the configu-
ration space via DPS is efficient compared with conventional
methods such as molecular dynamics that require waiting for
many such events, which become increasingly rare as the glass
transition is approached.

Our study combines energy landscape methods with an
idea from mean-field theory, that the overlap Q is a useful order
parameter, which measures the structural similarity of two con-
figurations.31,32 We classify minima of the PEL according to
their overlap so that the RPGT (if it exists) is associated with
localisation of the system, on long time scales, in a region of
the landscape where all configurations are structurally simi-
lar (high overlap).6 Our results are restricted to small systems
(N = 256 particles), but we do find a crossover on increasing the
number of pinned particles, from low-overlap to high-overlap.
These results are consistent with the predictions of Ref. 6,
although the restriction to small systems means that we can-
not distinguish whether the system has a smooth crossover
from low- to high-overlap or whether there is a true phase
transition.
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https://doi.org/10.1063/1.5042140
https://doi.org/10.1063/1.5042140
https://doi.org/10.1063/1.5042140
mailto:sn402@cam.ac.uk
mailto:vkd21@cam.ac.uk
mailto:dw34@cam.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5042140&domain=pdf&date_stamp=2018-09-18


114503-2 Niblett et al. J. Chem. Phys. 149, 114503 (2018)

In addition, we investigate how the PEL changes as parti-
cles are unpinned. We discuss the relationship between funnels
on the energy landscape, the packing of the particles in space,
and the overlap Q.

The structure of the paper is as follows: Sec. II describes
our model and methods and Sec. III characterises the crossover
from low- to high-overlap, including a summary of the impli-
cations for the RPGT in Sec. III H. Then Sec. IV analyses
the varying degree of frustration of the landscape, following
Ref. 33. In Sec. V, we analyze in more detail the dependence
of the energy landscape on the number of pinned particles by
following the behavior of distinct particle packings as the num-
ber of pinned particles is reduced. Finally, Sec. VI summarises
our conclusions.

II. METHODS
A. Model

We consider a binary Lennard-Jones (BLJ) system. There
are two atom types, larger A atoms and smaller B atoms,
interacting via Lennard-Jones potentials with the popular
Kob-Andersen parameter set.34 This choice allows compar-
ison with earlier numerical studies of the RPGT9,13,35 and
with earlier work on the energy landscapes of glass-forming
liquids.25,36–40

The truncation of the interaction potential uses the
Stoddard-Ford quadratic shifting scheme,41 which ensures that
the potential and its gradient are both continuous, as required
for geometry optimisation. Full details are given in Ref. 36:
the truncation range is rc = 2.5 σAA. The system size is
N = 256 atoms, and we use a periodically repeated cell with
fixed number density 1.2σ−3

AA. X = (r1, r2, . . ., rN ) will denote
a vector containing the positions of all particles.

Following convention, all lengths, energies, tempera-
tures, and times are given in reduced units, which can be
expressed in terms of σAA, εAA, and m, the mass of an A or
B atom.

B. Pinning particles

The random pinning method6,9,13 makes use of a refer-
ence configuration X∗ that is sampled from the equilibrium
(Boltzmann) distribution at some temperature T0. Reference
configurations were taken from molecular dynamics simula-
tions, which were confirmed to be locally ergodic using the
Mountain-Thirumalai fluctuation metric.36,42,43

Let c be the fraction of pinned particles, which means that
M = bcNc particles are chosen independently at random. The
notation bxc indicates the largest integer that is less than or
equal to x. The positions of these M particles are fixed, and
one considers the energy of the system as a function of the
position of the remaining (unpinned) particles. The potential
energy surface (i.e., PEL) and associated Boltzmann distribu-
tion depend on X∗ and on the set of pinned particles. Following
the literature on spin glasses and other disordered systems, we
refer to the combination of the reference configuration and
the set of pinned particles as a realisation of the disorder. To
obtain representative results, one should average over many
such realisations.

For each realisation of the disorder and each configuration
X of the unpinned particles, the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm44,45 was used
to minimise the energy (always with the pinned particles
fixed) so that each configuration can be associated with a
local minimum of the PEL. The local minimum associated
with the reference configuration X∗ is the reference minimum
X0.

All calculations performed in this paper, except those in
Sec. III G, used reference temperature T0 = 0.5 εAA/kB. The
results of Ozawa et al.13 suggest that this should be slightly
below the highest reference temperature at which the RPGT
transition would be clearly observed for our model.

C. Comparing structures: The overlap

Mean-field theory proposes that a useful order parameter
in glassy systems is the overlap between two configurations Xi

and Xj. Several definitions are possible for the overlap,13,46–48

and the general expectation49 is that all definitions should
lead to similar behavior as long as two configurations have
high overlap if and only if they are structurally similar. Fol-
lowing Ref. 12, our pinning procedure is independent of the
particle types, but the overlap depends only on the type-A
particles,

Q(Xi, Xj) =
1

Nm

Nm∑
k=1

Θ(a − |rk,i − rk,j |). (1)

Here, k runs over the set of unpinned A-type atoms, and Nm

is the number of such atoms. Θ is the Heaviside step function,
and rk ,i is the position vector of atom k in configuration Xi.
Also, a is a length scale parameter, which we set to 0.3 σAA

following earlier work.13,47,50 Before calculating the overlap,
permutational alignment is performed for Xi and Xj to account
for indistinguishability of the mobile A atoms, using a shortest
augmenting path algorithm.51,52 This alignment ensures that
(for example) swapping the positions of two particles of the
same species does not affect the overlap.

If Xi and Xj are very similar then Q(Xi, Xj) ≈ 1, which
is the largest possible value. The smallest possible value is
Q = 0, and independent random configurations typically have
small values Q ≈ 0. Based on the decay of overlap that hap-
pens during β-relaxation,53 and on other previous work,13,54

we introduce a threshold parameter Q∗ = 0.7 such that if
Q(Xi, Xj) > Q∗ then we identify Xi and Xj as structurally
similar.

The overlap of an arbitrary configuration X with the
reference minimum X0 is

Q0(X) = Q(X, X0). (2)

D. Potential energy landscape methodology

The PEL of a pinned system is given by V (X), which
is a 3 Nm-dimensional function because the positions of the
pinned atoms are fixed. We adapted standard geometry optimi-
sation methods to identify local minima of V (X), which control
the thermodynamics at low temperatures and transition states
(stationary points with Hessian index one) which control the
dynamics.
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We classify minima of the pinned landscape according
to their energies V and their overlaps Q0 with the reference
minimum. We define a potential energy density of minima
gIS such that gIS(V, Q0) dV dQ is the number of minima
with energies between V and V + dV and overlaps between
Q0 and Q0 + dQ. We can also define a landscape entropy,
SIS(V ) = kB ln gIS(V ),16,55 where gIS(V ) dV is the number of
minima with energies between V and V + dV. The subscript
IS refers to “inherent structures,” an alternative nomenclature
for PEL local minima.18

1. Exploring the PEL: Identifying minima

To locate minima of the PEL, we use the basin-
hopping27,28 and basin-hopping parallel tempering (BHPT)56

methods. Each basin-hopping run begins by quenching a start-
ing configuration to a local minimum (see Secs. III A and
III B for different approaches to choosing the initial mini-
mum). In each step, a new local minimum is proposed by
perturbing the structure and performing local energy min-
imisation. The step is accepted or rejected using a Metropo-
lis criterion with a fictitious temperature TBH. If the step
is accepted, the original minimum is stored in a database,
and the next step begins from the new minimum. Otherwise,
the algorithm returns to the original minimum for the next
step.

The two main parameters in this procedure are the maxi-
mum size of the structural perturbation and the fictitious tem-
perature TBH. These parameters control the rates at which new
minima are discovered and accepted, respectively, but they do
not affect the PEL being sampled. The parameters are usually
selected through trial and error to achieve a target acceptance
rate for new minima and may be adjusted dynamically during
the calculation.

Basin-hopping locates low-energy minima efficiently
because the energy minimisation step removes downhill poten-
tial energy barriers between adjacent local minima. However,
when a PEL contains many funnels (see below), the algo-
rithm may become temporarily trapped in a single low-energy
region. Using a low TBH exacerbates this problem, but using
a high TBH means that the low-energy regions may not be
sampled adequately.

To mitigate this problem, basin-hopping parallel tem-
pering (BHPT) can be applied.56 In BHPT, one considers
N r replicas of the basin-hopping algorithm, each with a dif-
ferent value of TBH. By exchanging different configurations
between the replicas, high energy regions of the landscape can
be crossed more efficiently.

Basin-hopping and BHPT both explore local minima effi-
ciently and can (in principle) be used to identify all minima on
a PEL. Our strategy here is to generate a histogram of mini-
mum energies and overlaps, which we denote by ρIS(V, Q0).
In the limit where the algorithm samples the PEL exhaustively
for a given range of V and Q0,

ρIS(V , Q0)→ gIS(V , Q0). (3)

In practice, the landscape is not explored exhaustively, so there
are systematic differences between ρIS and gIS, but we expect
the important qualitative features of gIS to be mirrored by ρIS.

This point is discussed in more detail during the analysis of
the results.

2. Transition state searches

Many properties of physical systems can be predicted
by considering the statistics of local minima on the PEL,
together with the transition states that connect them. To obtain
information about transition states, we start from a database
of minima and use double-ended searches, which take two
local minima as input and identify a discrete path between
them. A discrete path is a sequence of transition states and
intermediate minima connected by steepest-descent paths.29,30

Specifically, the doubly-nudged57,58 elastic band59,60 (DNEB)
algorithm is used to construct an approximate minimum
energy pathway between pairs of minima. Structures corre-
sponding to the local maxima on this pathway are candidate
transition states, which are refined accurately using hybrid
eigenvector-following (HEF).16,61,62 If a complete pathway
between the original pair of minima has not been identi-
fied after one DNEB/HEF cycle, the Dijkstra algorithm63

is used with a suitable distance metric64 to select another
pair of minima and a new cycle is attempted. This pro-
cedure is repeated until the original pair of minima have
been connected. Double-ended searches often add intermedi-
ate minima to the database as well as the connecting transition
states.

Once transition states are known, energy barriers between
minima can be determined. The overall barrier height from
minimum A to B is defined as the energy difference between
A and the highest transition state on the minimum energy
pathway from A to B.

3. Disconnectivity graphs

After many transition state searches, one obtains a
database of energy minima connected by transition states. To
analyze the landscape, it is useful to generate a disconnectiv-
ity graph,16,65 which can be interpreted by visual inspection.
In these graphs, energy minima are represented as points,
whose heights indicate the corresponding potential energy.
These points are connected (upwards) to branching points:
the energy of a branching point is (close to) the energy of the
transition state that connects the minima below it. Transition
state energies are rounded up to discrete energy levels to pro-
duce a clear visual representation. The process of generating a
disconnectivity graph from a model glassy landscape is shown
schematically in Fig. 1.

Disconnectivity graphs16,65 can faithfully represent the
energies of the local minima and the energy barriers between
them, as determined from the transition states.

E. Landscape features: Funnels, metabasins,
packings, and the configurational entropy

A central motivation for random pinning studies6,10 is that
they enable (in principle) the accessible configuration space
of a system to be varied, without changing the temperature
or the liquid structure and hence without requiring extensive
equilibration at low temperatures.

In mean-field theories, thermally accessible configuration
space is divided into a set of metastable states, the number of
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FIG. 1. Top: Cartoon PEL (in black) illustrating the disconnectivity graph
construction (in red). Dashed lines indicate energy thresholds, and brack-
ets show the approximate extent of local funnels. Bottom: the resulting
disconnectivity graph.

which is described by an entropy-like quantity. At the RPGT
(c = c∗), this quantity vanishes, indicating that only a sin-
gle metastable state is accessible. The entropy-like quantity
is often called the “configurational entropy” in the glasses lit-
erature, but we wish to reserve this term for the total entropy
obtained from the energy density of states in configuration
space. Hence we refer to the measure based on the number of
accessible metastable states as the “metastable state entropy,”
SMS, to avoid confusion.

By investigating how the PEL changes with pinning,
we can test how the mean-field prediction plays out in the
pinned BLJ liquid. However, while SMS is a well-defined
quantity in mean-field models, it does not have a unique def-
inition in finite-dimensional systems where interactions have
finite range, since metastable states have finite lifetimes in
this case. Nevertheless, metastable states can be identified
as regions of configuration space within which the system
remains (dynamically) localised over sufficiently long time
periods. See Ref. 66 for a discussion of how this construc-
tion can be applied consistently in both finite-dimensional and
mean-field systems.

We consider three ways of identifying candidates for such
states on the PEL and find that they identify similar sets of
candidate metastable states.

A local funnel on the PEL is a group of minima for
which barriers to reach a lower-energy minimum (downhill
barriers) are systematically smaller than barriers to reach a
higher-energy minimum (uphill barriers). Funnels are usually
identified informally by visual inspection of disconnectiv-
ity graphs (see Fig. 1). Glassy landscapes typically contain
many local funnels in the same energy range. Energy barri-
ers between funnels are typically larger than barriers within
funnels.

A metabasin can be defined as a group of minima
between which dynamical transitions are rapid and eas-
ily reversible.22,23 Transitions between states in different
metabasins are slower and should correspond to structural
relaxation of the glass-former. In this sense, metabasins are
similar to metastable states (albeit with finite lifetimes). Local
funnels often correspond to metabasins.25

We define a packing of the particles as a group of minima
with high mutual overlap and low overlap with other packings.
Within mean-field theories, this method can be used to identify
metastable states, but we emphasise that this definition does
not include any dynamical information.

With these definitions in hand, we can obtain an expres-
sion for SMS in a finite-dimensional system. Suppose that
for low temperatures T the thermally accessible configuration
space for pinning fraction c can be broken up into a setΛ(c, T )
of distinct packings and that the canonical (Boltzmann) equi-
librium occupation probability for packing i is pi(c, T ). Then
a metastable state entropy, SMS, can be defined as

SMS(c, T ) = −
∑

i∈Λ(c,T )

pi(c, T ) log pi(c, T ), (4)

which depends implicitly on the system size N. To the extent
that funnels and metabasins coincide with packings, the sum
in (4) can be replaced by a sum over metabasins or fun-
nels. On taking the thermodynamic limit, SMS per particle
is

sMS(c, T ) = lim
N→∞

SMS(c, T )
N

. (5)

The mean-field prediction is that sMS(c, T ) vanishes contin-
uously at the RPGT (c = c∗). Hence, for c < c∗, mean-field
theory predicts sMS > 0, but for c > c∗, sMS = 0. Recalling (4),
this result means that for finite systems and c > c∗, the number
of metastable states with significant occupation probabilities
is sub-exponential in N : we will typically find that a single
metastable state becomes dominant.

These hypotheses will be tested in Sec. III. We do not
attempt to measure sMS directly, but we do find that for small
c many packings contribute to the sum in (4), while for large
c only a single packing contributes. These results show how
the PEL evolves during this process, complementing previous
studies,10,13 which observed a dramatic decrease in SMS for a
supercooled liquid on increasing the pinning fraction c through
a critical value c∗.

We note that SMS has similarities with several other mea-
sures of entropy. The landscape entropy SIS is defined16,55

using the potential energy density of minima (see Sec. II D).
This landscape entropy can be estimated from the knowl-
edge of the total entropy and the average vibrational entropy
per minimum.55 SIS is not the same as SMS because a
metastable state does not correspond to a single energy min-
imum: the waiting time within minima is often quite short,67

and SIS is not expected to vanish at the RPGT. Other mea-
sures of metastable state entropy include the free energy cost
required to localise the system in a state of high overlap68

and direct counting of structural motifs.69 Our expectation
is that these quantities should behave in a similar way to
SMS.
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III. RESULTS: POTENTIAL ENERGY MINIMA
AND LANDSCAPE ORGANISATION
A. Return times

To illustrate that increasing c dramatically reduces the
number of states with significant equilibrium occupation prob-
ability, we used basin-hopping to explore low-energy min-
ima on the landscapes corresponding to several different
pinning fractions. The reference minimum X0 has a low
energy, and we expect it to be part of an accessible state for
all c.

Let X(s) be the PEL minimum obtained after s basin
hopping steps and let Q0(s) = Q(X0, X(s)) be the overlap of
this minimum with the reference minimum. We extracted the
initial minima X(0) from molecular dynamics simulations of
the pinned system with very high temperatures so that Q0(0)
would be small. 30 basin-hopping calculations were performed
for each value of c, each with a structurally distinct initial
minimum.

If the only accessible metastable state is the one containing
the reference minimum, then we expect each basin-hopping
calculation to converge to that state: Q0(s) > Q∗ for large s.
On the other hand, if there are many accessible states, one
expects the algorithm to explore regions that are different
from the reference configuration so that Q0(s) will remain
small.

Figure 2 shows results for a single reference configura-
tion (T0 = 0.5) and various pinning fractions. We used an
initial temperature parameter TBH = 5, which was adjusted
during the sampling to maintain an acceptance rate of 70%.
Other parameter sets were found to give similar results, but
the calculations were less efficient.

Figure 2 shows that calculations with c ≥ 0.15 tend to
a large-s limit of Q0(s) > 0.7, indicating that the system
approaches the reference minimum. For c ≤ 0.13, we find
Q0(s) . 0.4 for all s, indicating that the system is exploring a
larger region of configuration space. These observations sug-
gest a rather sharp crossover in the overlap as c is increased,
consistent with the predictions of Ref. 6.

FIG. 2. Plots showing how basin-hopping calculations explore overlap space
at several different pinning fractions. s denotes the number of basin-hopping
steps taken, and Q0(s) is the average of the overlap Q0 for 30 basin-hopping
runs with independent starting points. The dashed horizontal line shows
Q0 = Q∗, which is the threshold used to define when structures are similar
to the reference.

B. Distribution of local minima

To explore this crossover in more detail, we used basin-
hopping parallel tempering (BHPT) to explore and sample the
local minima of pinned BLJ, using the same reference config-
uration prepared at T0 = 0.5. The aim is to estimate the density
of minima gIS(V, Q0), so the basin-hopping temperatures of
the different replicas were selected to promote exploration of
a large variety of minima. We found that for TBH & 25 the
range of minimum energies explored becomes relatively con-
stant, while replicas with TBH < 0.5 do not explore new minima
efficiently. Therefore, we used 12 basin-hopping replicas with
TBH spaced geometrically between 0.5 and 25.0 to allow effi-
cient exchange of configurations between replicas. For each
replica, 10 basin-hopping runs of 105 steps were performed
and the results were combined to produce a larger database of
minima. The basin-hopping step size was varied dynamically
to ensure that approximately 70% of the steps located a new
minimum.

Every basin-hopping replica was initialised at the refer-
ence minimum X0. This choice may bias the sampled distri-
bution of minima towards high Q0 regions of the landscape;
however, the inclusion of high-temperature replicas, which
rapidly decorrelate from the initial minimum, should limit this
effect.

Figure 3 shows contour plots of log10ρIS(V, Q0) for sev-
eral values of c. The essential feature is that for c ≥ 0.17 all

FIG. 3. Contour plot of log10ρIS(V, Q0) for databases produced using BHPT.
ρIS(V, Q0) is proportional to the number of minima in the database that have
potential energy V and overlap Q0 with the reference minimum, which was
obtained at temperature T0 = 0.5.
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low-energy minima have Q0 > 0.7, while for c ≤ 0.16 there
is a significant density of states at low energy with Q0 < 0.7,
indicating that multiple metastable states are accessible. As in
Fig. 2, this crossover occurs over a rather narrow range of c:
the difference between c = 0.16 and c = 0.17 corresponds to
pinning three extra atoms.

Recall from Eq. (3) that the sampled distributions ρIS in
Fig. 3 cannot be interpreted as direct measurements of gIS;
these quantities coincide only in the limit of exhaustive sam-
pling. However, we expect that regions where ρIS(V, Q0) = 0
probably have gIS(V, Q0) ≈ 0 because there are relatively few
minima at low energies and our results are consistent with
having sampled almost all of them.

For a simple assessment of which minima will be ther-
mally accessible, we assume that the standard deviation of IS
energies visited by the pinned system is equal to the equivalent
quantity for the unpinned system, measured asσIS = 4.98 εAA.
Therefore almost all of the equilibrium occupation probabil-
ity is distributed over minima lying within about 10 εAA of
the reference minimum. This is the energy range that we have
considered to be thermally accessible in the present section
and throughout this paper.

C. Global probability of states

So far, all our results correspond to a single reference
configuration. We have repeated our analysis for two other
reference configurations and five realisations of the disorder
for each X∗. To study the changing landscape as a function of
c, we use consistent sequences of disorder realisations where
the set of pinned atoms at each c is a subset of the pinned atoms
at all higher pinning fractions.

To summarise the results, we define

P(Q0 > 0.7) =
∫ Vc

−∞

∫ 1

0.7
ρIS(V , Q0) dQ0 dV , (6)

where V c is an energy cutoff that restricts the integral to low
energy (accessible) minima.

Figure 4 shows P(Q0 > 0.7) as a function of c for several
sequences of disorder realisations and the disorder average of
this probability. For each sequence, one observes a crossover as

FIG. 4. Probability that a low-energy minimum selected at random will be
similar to the reference minimum. 15 realisations of the disorder are repre-
sented, indicated by gray lines. The black line represents the average value.
Three different reference configurations were used, all of which were obtained
at T0 = 0.5. The variation in P(Q0 > 0.7) between different disorder realisa-
tions with the same reference configuration is similar to the variation between
different references.

c varies. The position and slope of the crossover vary between
realisations, but the behavior is similar in all cases, and the
average probability also shows a crossover between c ≈ 0.14
and c ≈ 0.17.

D. Transition states

The results so far show that the distribution of local energy
minima changes dramatically under random particle pinning.
However, this analysis considers only the energies of the min-
ima and their overlap Q0 with the reference minimum. By
projecting the landscape onto these coordinates, one discards
a large amount of information, particularly the energies of the
transition states that connect the minima. There may be multi-
ple funnels/states where minima with similar Q0 are separated
by large barriers, which are not apparent from distributions
such as ρIS(V, Q0). To resolve this detail, we consider the
connectivity of the landscape.

We performed independent transition state sampling for
each landscape depicted in Fig. 3. Initially, 101 local minima
were selected from each database. The reference minimum
was always selected, and 100 other low-energy minima were
chosen from a uniform distribution in Q0. We then used the
methods described in Sec. II D 2 to calculate discrete paths
between each pair of minima in the set of 101, a total of 5050
pairs. Combining the paths yielded a larger database of PEL
minima and saddle points in the region of configuration space
spanned by the initial set of 101 minima. Both low- and high-
Q0 regions of space were included.

E. Disconnectivity graphs

The landscape databases are represented in Fig. 5 as dis-
connectivity graphs (see Sec. II D 3). Each branch is coloured
according to its overlap Q0 with the reference minimum. The
landscape corresponding to c = 0.10 resembles an unpinned
glassy PEL. In particular, it has many local funnels, which
we have previously25 identified with metabasins.22,23 There
is no dominant lowest-energy region of the PEL, but instead
many of the local funnels have comparable energy and all
funnels have lowest minima that fall within 10 εAA of the
reference, indicating that they are significantly populated at
equilibrium.

At high pinning, the PEL has a very different structure.
In Fig. 5(e), there is a single low-energy region of the PEL,
which contains only minima similar to the reference minimum.
That is, pinning 18% of the particles has little effect on the
landscape funnel that contains the reference state, but it acts
to suppress other funnels. Single-funnelled landscapes usu-
ally correspond to structure-seeking systems,70 which relax
efficiently to their global minimum. In Fig. 5(e), the main
funnel contains quite high energy barriers and many min-
ima with comparable energies, so reproducible relaxation to
the global minimum is unlikely. However, the overall fun-
nel structure means that relaxation to the region of minima
with Q0 > 0.7 will be fast and irreversible, except at very
high temperatures. The result of pinning this many particles
is that the landscape no longer resembles that of a structural
glass former. We note, however, that this single-funnelled land-
scape includes minima with a wide range of Q0, including low
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FIG. 5. Disconnectivity graphs for landscapes generated by discrete path
sampling between minima found in BHPT calculations. Minima are coloured
by their value of Q0. The 10 εAA scale bar corresponds roughly to the range
of thermal accessibility at equilibrium.

overlaps Q0 ≈ 0.2. One should not imagine that pinning
destroys all minima with low overlap. Rather, one finds that
such minima still exist, but their energies are high compared
to the reference.

We also recall that Fig. 3 shows a significant difference
between c = 0.16 and c = 0.17, where the possibility of
minima with low energy and Q0 < 0.7 disappears rather sud-
denly. The disconnectivity graphs in Fig. 5 indicate a smoother
crossover as c is varied: the low-overlap funnels that compete

with the reference funnel at c = 0.16 do not disappear on
increasing to c = 0.17; instead it seems that the energy of
these funnels increases so that they are no longer competitive
with the reference funnel. We return to this point in Sec. V,
below.

As a final comment on Fig. 5, note that there are a con-
siderable number of minima with low energy and high Q0,
which nevertheless appear to be separated by large barriers
from the reference funnel. This is probably due to incomplete
sampling:71 it is likely that there exist low-energy transition
states connecting these minima to the reference funnel, but they
have not been found in the transition state search. However, it
is also possible that there are some large barriers between low-
energy minima with high overlap, caused by the immovable
pinned atoms.

F. Packings on the PEL

In Fig. 5, most local funnels are coloured uniformly, sug-
gesting that the minima within each funnel are structurally
similar. This similarity is expected in general for landscapes
with funnels, particularly in glasses where the funnels are
approximately equivalent to dynamical metabasins.25

To investigate the relationship between the landscape
structure and real-space structure, we use Q as a similarity
measure. In particular, we identify sets of minima such that all
minima within each set have a high overlap Q(Xa, Xb), while
minima in different communities have low overlap. Physically,
we argue that that these sets correspond to distinct packings of
the particles so that different minima within each packing typ-
ically differ by small local displacements. On the other hand,
minima in different packings correspond to larger displace-
ments, such as those that happen during structural relaxation
of the liquid.

Many methods exist72–74 for detecting highly connected
sets in a graph with edge weights given by a similarity measure,
but they typically require evaluation of all edge weights. Since
our databases contain of order 105 minima, we use a greedy
algorithm, which is typically much cheaper:

1. The “parent minimum,” Xp, for the first packing is the
reference minimum X0.

2. Compute Q(Xp, Xm) for each minimum Xm not currently
assigned to a packing.

3. If Q(Xp, Xm) > Q∗, add m to the same packing as p.
4. Use the lowest-energy unassigned minimum as Xp for

the next packing.
5. Iterate steps 2-4 until all unassigned minima lie above a

predefined energy threshold.

The greedy algorithm does not guarantee that every mini-
mum in a packing is more similar to the parent of that packing
than to any other parent. However, it does guarantee that all
minima within a packing are structurally close, and all parents
are dissimilar to each other.

Figure 6 shows the results of the greedy algorithm applied
to a database at c = 0.10. Branches are coloured according to
the packing to which the corresponding minimum belongs.
Most local funnels visible on the landscape correspond to a
single packing, verifying that the order parameter Q can be
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FIG. 6. Disconnectivity graph for the database with c = 0.10. Minima are assigned to packings using a greedy community detection algorithm, and each packing
is coloured differently in the graph. Only packings containing more than 1000 minima are shown, and all other minima are coloured black.

used to detect whether two minima are in the same funnel. Of
course, two configurations that are dissimilar from the refer-
ence minimum (small Q0) might have a high mutual overlap
(if they are in the same funnel) or a low mutual overlap, if
they are in different funnels. In this sense, the disconnectivity
graph contains much more information than histograms such
as Fig. 3 because it reveals the existence of multiple distinct
packings/funnels.

However, we note that there are many minima in Fig. 6 that
are identified as members of a packing but are not members
of any funnel. As in Fig. 5, this is likely a result of artificial
kinetic trapping: these minima may be part of a funnel, but the
relevant transition state has not been found.

G. Effect of reference temperature and system size

So far, all results have used reference configurations that
are Boltzmann-distributed at T0 = 0.5. Glassy features of the
system are expected to become more accentuated on cool-
ing, and mean-field theory predicts that c∗ decreases as T0 is
reduced. To test these expectations, we used BHPT to sam-
ple energy minima with reference configurations obtained at
T0 = 0.43. Results for one of these are shown in Fig. 7. Com-
paring with Fig. 3, we note that the high-overlap minima are
separated in energy from the low-overlap ones for c > 0.13,
while this separation required a larger pinning fraction c = 0.17
in Fig. 3. This effect is consistent with the theoretical picture of
Ref. 6. Figure 8 summarises the behavior for five realisations
of the disorder. As noted above, the crossover from low to high
overlap occurs at a smaller value of c, compared with Fig. 4:
this effect is consistent among different realisations of the
disorder.

The dependence of the crossover on T0 and on system
size is crucial for the theory of Ref. 6, which predicts a ther-
modynamic phase transition as c is increased. Our results
are not sufficient to investigate this prediction in detail, but
the Appendix shows preliminary results for a smaller system
(N = 180 particles). The smaller systems show a clearer sepa-
ration between high- and low-overlap, possibly because larger
systems can support distinct high- and low-overlap regions
within the same sample, making the crossover less sharp.

The methods that we have introduced here provide a natural
framework for investigating these questions.

H. Discussion

We summarise the conclusions so far. From Figs. 3 and
4, we see that increasing the number of pinned particles
reduces the number of low-energy minima with significant
equilibrium occupation probabilities. For T0 = 0.5, there is
a crossover at c ≈ 0.16 so that for larger c, the accessi-
ble minima are mostly in the same packing as the reference

FIG. 7. Histograms of log10ρIS(V, Q0) for a sequence of disorder realisations
with reference temperature T0 = 0.43 εAA/kB.
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FIG. 8. Probability that a low-energy minimum selected at random will be
similar to the reference minimum, with reference temperature T0 = 0.43.
Five different reference configurations have been used. Gray lines indicate
calculations from a single reference configuration, and the black line is the
disorder average.

minimum, as evidenced by their high overlap values Q0. From
Fig. 5, one sees that this crossover is accompanied by a
change in the energy landscape, from a multifunnelled (glassy)
landscape to a single-funnelled disconnectivity graph. From
Figs. 5 and 6, one sees that the funnels observed in the discon-
nectivity graph are closely related to the packings that can
be identified by the analysis of the overlap (recall Sec. II
E). Figures 7 and 8 show that lower reference temperatures
make these effects more pronounced, particularly that there
is a clearer distinction between high-overlap and low-overlap
minima.

All these results are broadly consistent with the theo-
retical predictions of Ref. 6 and with previous simulation
work.10,13 The crossovers that we observe happen at slightly
larger c than predicted by Ref. 13, and the effect of T0

on the position of the crossover seems to be weaker. How-
ever, the quantities that we use to characterise this crossover
are also quite different, so one does not expect quantitative
agreement.

As noted above, understanding whether this crossover cor-
responds to a thermodynamic phase transition would require
a more detailed analysis of different system sizes and temper-
atures. From a physical point of view, the first order character
of the RFOT transition suggests a clear separation between
two sets of minima, corresponding to macrostates with high
and low overlaps. Intermediate values of the overlap should be
strongly suppressed by the interfacial free energy cost asso-
ciated with the coexistence of different macrostates.10,54,75

Obtaining a clear separation between the minima with high
and low overlaps is hindered for T0 = 0.5 because the rela-
tively large number of pinned particles reduces the possibility
of very small Q0. It appears from Fig. 3 that the distributions
for the (putative) high- and low-Q macrostates are somewhat
overlapping, and no clear trough is observed in the probabil-
ity. One expects a clearer separation at lower T0, where fewer
particles are pinned, but this is not immediately apparent in
Fig. 7. The absence of a clear separation between macrostates
may be due to the relatively small system sizes used here: one
expects that the distributions for the two macrostates should
become narrower in larger systems, leading to a trough in
the probability and (perhaps) to a directly observable inter-
face between high- and low-overlap states. Unfortunately,
these larger systems are challenging numerically, as they are

for other methods.10,13 Hence we defer this question to later
work.

In the remainder of this paper, we discuss several other
aspects of the energy landscapes in these pinned systems, par-
ticularly the degree of frustration and the extent to which one
can think of metabasins evolving smoothly on the landscape
as c is reduced.

IV. LANDSCAPE FRUSTRATION

In this section, we present quantitative descriptions of the
change in landscape organisation as a function of c. First,
we consider simple properties, which hint at the change in
structure observed in Fig. 5, and then we propose a more
sophisticated metric to quantify this change directly.

Figure 9 shows histograms of the energy barriers between
local minima and the reference minimum for each land-
scape database. The barriers are divided into “uphill,” i.e.,
barriers to go from the reference minimum to a particular
local minimum, and “downhill,” from the minimum to the
reference.

The average uphill barrier increases systematically with c
because the sides of the main landscape funnel become steeper,
as observed in Fig. 5. In contrast, the mean downhill barrier
is quite insensitive to c, but a long tail of high energy barri-
ers develops as c decreases. This tail corresponds to minima
in low-energy funnels that have higher energy barriers to the
reference than minima in the main funnel.

Figures 9 and 5 both indicate that pinned PELs become
less frustrated as c increases, meaning that there are fewer low-
energy regions of the landscape separated by high barriers.

FIG. 9. Histograms of the heights of energy barriers between local minima
and the reference minimum, obtained at T0 = 0.5. The first panel shows the
“uphill” barriers, and the second panel shows “downhill” barriers. The scale
is the same for both panels.
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Therefore the simulation time required to reach high-Q0

minima will be small at high c.
Previously, we have characterised PELs using a frustra-

tion metric, f̃ , related to the efficiency of locating the global
minimum from a randomly chosen minimum.33 In this case,
we are interested in transition rates to the funnel that con-
tains the reference minimum (which is not necessarily the
global minimum). Therefore a modified frustration metric
is used, based on the definition of packings presented in
Sec. III F,

f̃p =
∑
α<P0

p̃eq
α (T )*

,

V†α − V0

max{Vα − V0,∆V }
+
-
. (7)

Here, P0 is the packing that contains the reference mini-
mum, and α runs over all minima that do not belong to P0.
peq
α (T ) is the equilibrium occupation probability of α, calcu-

lated within the harmonic superposition approximation.16,76

p̃eq
α = peq

α /(1 −
∑
β∈P0

peq
β ) is the renormalised probabil-

ity excluding all minima belonging to P0. V0 and Vα are
the energies of the reference minimum and minimum α,
respectively.

V†α is the energy of the highest transition state on the
minimum energy pathway connecting α to the reference, and
∆V = 0.1 εAA is a parameter chosen to avoid divergence of
f̃p in cases where the reference minimum is not the global
minimum.

f̃p is plotted in Fig. 10 for the landscapes represented
in Fig. 5. Frustration decreases as a function of c for the
entire temperature range plotted, illustrating a major struc-
tural change in the PEL concurrent with the pinning transi-
tion. Over this range in c, the landscape transforms from a
multifunnelled structure typical of supercooled liquids into
a single-funnelled non-glassy structure. This result agrees
with and reinforces our qualitative interpretation of Fig. 5.
The large range in f̃p emphasises the magnitude of the
change.

At low temperatures, f̃p(T ) varies more rapidly because
the sum in Eq. (7) is dominated by a few large terms. In par-
ticular, the frustration of the c = 0.16 landscape increases
dramatically, which may be a peculiarity of this particular
disorder realisation because several packings at c = 0.16 are
almost degenerate in energy with the reference minimum.

FIG. 10. Modified frustration index f̃p(T ) for landscapes with different
pinning fractions.

V. EVOLUTION OF THE PEL AS THE PINNING
FRACTION IS REDUCED

In this section, we examine the effects of random pinning
by following the behavior of particular minima and packings
as c changes. For example, we consider the overlap between
minima in landscapes that have different c and hence appear
in different panels of Fig. 5.

We perform this analysis by starting from a landscape
with c = c0 = 0.18 and unpinning atoms one by one (always
in the same sequence), reminimising after each atom is
unpinned. New sets of minima at lower values of c are
obtained.

One might imagine a complementary procedure, follow-
ing the evolution of minima as c is increased. This approach
would be interesting, but it is difficult to implement because
there is no unique route to obtain a minimum at c0, given an
initial minimum at some lower pinning fraction c. We therefore
leave this analysis for future work.

A. Evolution of the minima

We studied the properties of a set of minima during unpin-
ning from c0 = 0.18. This set included the reference minimum
at c0 and the parent minimum of every packing that contained
at least 1000 minima.

Figure 11(a) shows how the energies of these minima
change during unpinning. Each line decreases monotonically
because we reminimise after each particle is unpinned. For
most minima, this decrease is substantial: around 20 εAA on
average. Because the reference minimum decreases by only
10 εAA over the same interval, this result means that the off-
set between the reference minimum and the other funnels
decreases during unpinning. Figure 11(b) shows little change
in Q0 during unpinning, indicating that most packings do not
undergo significant structural change when pinned atoms are
released.

B. Evolution of the packings

We now consider the evolution of packings (groups of
minima), as c is decreased. We took a sample of 101 minima
representing all the important packings at c = c0 = 0.18 and used
the unpinning procedure to obtain the corresponding minima
at c = 0.17. For both pinning fractions, we found discrete paths
between every pair of minima, ensuring full connectivity. We
also repeated this unpinning procedure to obtain databases at
c = 0.16 and c = 0.15. Figure 12 shows the disconnectivity
graphs for c = 0.17 and c = 0.16.

We emphasise that the disconnectivity graph obtained by
unpinning in Fig. 12 is not at all equivalent to the graphs shown
in Fig. 5, even if the value of c is the same. The set of min-
ima used to initialise the path sampling calculation in Fig. 5
was obtained by BHPT sampling at the same value of c as the
transition states. In contrast, the minima used for path sam-
pling in Fig. 12 were obtained by relaxing minima from BHPT
at a higher value of c. Therefore the disconnectivity graphs
in Fig. 12 may be thought of as the subset of the c = 0.17
and c = 0.16 landscapes that is directly related to minima that
also exist on the c = 0.18 landscape. On the other hand, Fig. 5
represents a sample of the entire PEL at each value of c.
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FIG. 11. Figures showing how (a) V and (b) Q0 evolve for a set of minima with progressive unpinning from a c = 0.18 landscape (as indicated by the arrows).
Each gray line represents the parent minimum of a large packing on the c = 0.18 landscape. The thick black line represents the average value over the gray lines.
The red line represents the reference minimum. Panel (c) shows how the energy change during unpinning depends on the overlap. ∆V is the energy difference
between a minimum at c = 0.18 and the corresponding minimum at c = 0.10 and Q0 is the average Q0 of those two minima. The best fit trend line is shown,
which has a correlation coefficient −0.463.

Note the differences between the two figures: in the
c = 0.16 panel of Fig. 5, there are several low-Q0 packings
with energies within 1 to 2 εAA of the reference structure, but
the gap in the c = 0.16 panel of Fig. 12 is significantly larger.
We cannot follow minima as c increases, but the natural con-
clusion here is that the packings that exist (for c = 0.16) with
low energy and low Q0 are somehow “projected out” as the
number of pinned particles is increased, which explains why
they have no counterparts in the high-c landscape. This result
is consistent with the theory of random pinning.6 We repeated
this unpinning procedure to obtain graphs at c = 0.16 at c = 0.15
(not shown).

We used the packing detection algorithm of Sec. III F
to identify packings in both landscapes, restricting to those
that contain at least 1000 minima. We estimated the mutual
overlap between pairs of packings: for two packings A, B we
define

Q(A, B) =
1

NANB

∑
X∈A

∑
Y ∈B

Q(X, Y ),

where the sums run over all minima within each packing (the
number of minima in packing A is NA, etc). In practice, we

estimate Q by selecting 10 minima at random from each pack-
ing. The sum in the overlap calculation includes all atoms that
are unpinned in the lower-c configuration.

Figure 13 shows Q(A, B) for different pairs of landscapes.
The labeling of the packings is arbitrary; they have been
ordered using the Hungarian algorithm77,78 to maximise the
overlap along the main diagonal of each panel. Most packings
at the lower value of c have high overlap with exactly one “par-
ent packing” from the higher c. Some of the correspondences
between parent and daughter packings are shown in Fig. 12.
As in Fig. 11, one sees that packings retain their identities as c
is reduced, but Fig. 11 also shows that the energy gap between
the reference and low-Q0 minima decreases slightly as c is
reduced. This observation indicates a weak negative relation-
ship between Q0 and the energy decrease during unpinning,
which is illustrated in Fig. 11(c).

As well as pairs of packings that have a clear parent-
daughter relationship, there are several other scenarios that
can (and do) occur. First, there may be packings on the low-c
landscape that have no apparent parent on the high-c land-
scape. These features correspond to columns in Fig. 13 in
which no large values appear. In this case, unpinning leads
to new packings that were not present at higher c, consistent

FIG. 12. Top panel: correspondence between packings
in different disconnectivity graphs. The upper graph rep-
resents a landscape with c = 0.17, and the lower graph
is for c = 0.16. Black lines connect some of the pack-
ings on the two landscapes that have Q > 0.7 (see
equation in Sec V B). Minima are coloured accord-
ing to their Q0 values, using the same colour scale as
before.
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FIG. 13. Heat maps of matrices representing the average overlap between
low-lying minima in different packings for two landscapes with different c.
Packings have been ordered to maximise overlap along the main diagonal.

with an increasing value of SMS as c is reduced. Second, there
may be packings on the high-c landscape that have no clear
daughter on the low-c landscape; these correspond to rows
in Fig. 13 with no large values. In this case, unpinning some
atoms has presumably led to a significant rearrangement in
the structure of the system; the original packing may have
been stabilised by one of the pinned atoms and is destroyed by
unpinning. Third, there may be daughter packings (at low c)
with more than one parent; and there may be parent packings
(at high c) with more than one daughter. These correspond
to splitting or merging of packings as c is reduced. Fourth,
we sometimes observe two parent and two daughter packings
such that both parents have high overlap with both daughters:
in Fig. 13, one then sees an off-diagonal element with a large
value of Q, together with a large value of Q in the corre-
sponding transposed element. This scenario indicates pairs of
packings that are structurally similar but not similar enough

to be identified as a single packing by our packing-detection
algorithm.

To end this section, recall that the original theoretical pic-
ture of random pinning6 is that SMS is reduced as c is increased,
leading to an RPGT when there is only one packing with appre-
ciable occupation probability. Here we have considered the
unpinning process (decreasing c), which limits our ability to
draw conclusions about the behavior when c increases. In par-
ticular, since the packings shown in Fig. 13 are obtained by
successive unpinning, one tends not to sample low-c pack-
ings that lack any “parent” (in the higher-c landscape). To
the extent that this limitation may be ignored, our results fol-
low the qualitative behavior predicted by mean-field theory,6

although situations in which some packings have multiple
parents or multiple daughters are not expected in mean-field
models.

VI. CONCLUSIONS

We have analyzed the energy landscape of a randomly
pinned glassy system, using the overlap Q as an order param-
eter. As the pinning fraction c is increased, the landscape
changes from a typical glassy structure with many funnels
into a single-funnelled structure in which all thermally acces-
sible minima have high overlap with the reference minimum.
These observations match the situation anticipated by Cam-
marota and Biroli,6 although the data presented here cannot
resolve whether this crossover corresponds to the predicted
thermodynamic phase transition. We showed that the over-
lap, which is the natural order parameter within mean-field
theories of the glass transition,31,32 can be used to define dis-
tinct packings of the particles and that these packings can
be identified with funnels on the energy landscape. We pro-
pose that packings represent physically relevant metastable
states such that the associated entropic quantity SMS should
vanish at the RPGT. Future numerical work could test this
hypothesis.

We quantified the change in the landscape structure by
calculating a frustration metric, which indicates that the ther-
modynamic and dynamic bias toward the reference structure is
greater at high c than low c. In addition, we introduced methods
for tracking packings (and individual minima), as c is reduced.
The results indicate a complex phenomenology, where pack-
ings typically seem to retain their identity as c changes, but
they can also split and merge.

The methodology presented here offers a new route for
investigating the effects of random pinning in amorphous sys-
tems, providing a link between mean-field theories and the
potential energy landscape.
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APPENDIX: EFFECT OF SYSTEM SIZE

If the RPGT is an equilibrium phase transition,
P(Q0 > 0.7) should be discontinuous in the thermodynamic
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limit because the number of distinct metastable states would
change suddenly at c∗. Finite size effects suppress this dis-
continuity79,80 but can in principle be removed by system
size scaling analysis. The gradient of P(Q0 > 0.7) at the
crossover should extrapolate to infinity in the infinite sys-
tem size limit if the landscape transformation corresponds
to a thermodynamic event. Also, in large systems, a true
phase transition should produce a bimodal distribution ρIS(V,
Q0), with two populations of minima (high and low over-
laps), separated by a deep trough in the probability. This
trough results from the interfacial free energy cost to nucle-
ate a configuration with low overlap, within a high overlap
system.

As an initial step towards this scaling analysis, Fig. 14
presents ρIS(V, Q0) for a smaller BLJ simulation cell contain-
ing 180 atoms (144 A-type and 36 B-type) and comparable
plots for the 256-atom landscapes. No qualitative differences
are observed between the two systems, which may indicate
that the landscape properties we probe are broadly indepen-
dent of the system size. The density of minima with Q0 values
intermediate between the high- and low-overlap states (i.e.,
Q0 ≈ 0.7) is slightly smaller in the smaller system. This
result may suggest that the larger system is better able to
support distinct high- and low-Q0 regions within the same
configuration, which tends to “smooth out” the sharp tran-
sition predicted in mean-field theory (or push it to lower
temperature).

FIG. 14. Histograms comparing ρIS(V, Q0) between different system sizes.
All graphs have the same vertical scale. The reference minimum was obtained
at T0 = 0.5.
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