54 research outputs found

    An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments

    Get PDF
    Above polar ice sheets, atmospheric water vapor exchange occurs across the planetary boundary layer (PBL) and is an important mechanism in a number of processes that affect the surface mass balance of the ice sheets. Yet, this exchange is not well understood and has substantial implications for modeling and remote sensing of the polar hydrologic cycle. Efforts to characterize the exchange face substantial logistical challenges including the remoteness of ice sheet field camps, extreme weather conditions, low humidity and temperature that limit the effectiveness of instruments, and dangers associated with flying manned aircraft at low altitudes. Here, we present an unmanned aerial vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. This system was deployed to the East Greenland Ice-core Project (EastGRIP) camp in northeast Greenland during summer 2019. Four sampling flight missions were completed. With a suite of atmospheric measurements aboard the UAV (temperature, humidity, pressure, GPS) we determine the height of the PBL using online algorithms, allowing for strategic decision-making by the pilot to sample water isotopes above and below the PBL. Water isotope data were measured by a Picarro L2130-i instrument using flasks of atmospheric air collected within the nose cone of the UAV. The internal repeatability for δD and δ18O was 2.8 ‰ and 0.45 ‰, respectively, which we also compared to independent EastGRIP tower-isotope data. Based on these results, we demonstrate the efficacy of this new UAV-isotope platform and present improvements to be utilized in future polar field campaigns. The system is also designed to be readily adaptable to other fields of study, such as measurement of carbon cycle gases or remote sensing of ground conditions.publishedVersio

    Impact of preventive therapy on the risk of breast cancer among women with benign breast disease.

    Get PDF
    Licensed Creative Commons Attribution Non-Commercial No Derivatives LicenseThere are three main ways in which women can be identified as being at high risk of breast cancer i) family history of breast and/or ovarian cancer, which includes genetic factors ii) mammographically identified high breast density, and iii) certain types of benign breast disease. The last category is the least common, but in some ways the easiest one for which treatment can be offered, because these women have already entered into the treatment system. The highest risk is seen in women with lobular carcinoma in situ (LCIS), but this is very rare. More common is atypical hyperplasia (AH), which carries a 4-5-fold risk of breast cancer as compared to general population. Even more common is hyperplasia of the usual type and carries a roughly two-fold increased risk. Women with aspirated cysts are also at increased risk of subsequent breast cancer. Tamoxifen has been shown to be particularly effective in preventing subsequent breast cancer in women with AH, with a more than 70% reduction in the P1 trial and a 60% reduction in IBIS-I. The aromatase inhibitors (AIs) also are highly effective for AH and LCIS. There are no published data on the effectiveness of tamoxifen or the AIs for breast cancer prevention in women with hyperplasia of the usual type, or for women with aspirated cysts. Improving diagnostic consistency, breast cancer risk prediction and education of physicians and patients regarding therapeutic prevention in women with benign breast disease may strengthen breast cancer prevention efforts

    Soil Moisture and Fungi Affect Seed Survival in California Grassland Annual Plants

    Get PDF
    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival

    Data Generated during the 2018 LAPSE-RATE Campaign: An Introduction and Overview

    Get PDF
    Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado\u27s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020)

    Outcome after extended follow-up in a prospective study of operable breast cancer: key factors and a prognostic index

    Get PDF
    In 1990, 215 patients with operable breast cancer were entered into a prospective study of the prognostic significance of five biochemical markers and 15 other factors (pathological/chronological/patient). After a median follow-up of 6.6 years, there were 77 recurrences and 77 deaths (59 breast cancer-related). By univariate analysis, patient outcome related significantly to 13 factors. By multivariate analysis, the most important of nine independent factors were: number of nodes involved, steroid receptors (for oestrogen or progestogen), age, clinical or pathological tumour size and grade. Receptors and grade exerted their influence only in the first 3 years. Progestogen receptors (immunohistochemical) and oestrogen receptors (biochemical) were of similar prognostic significance. The two receptors were correlated (r=+0.50, P=0.001) and displaced each other from the analytical model but some evidence for the additivity of their prognostic values was seen when their levels were discordant

    Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science During the LAPSE-RATE Campaign

    Get PDF
    Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 °C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS
    corecore