9 research outputs found

    Characterization of Novel Pyroelectrics: From Bulk GaN to Thin Film HfO2

    Get PDF
    The change of the spontaneous polarization due to a change of temperature is known as the pyroelectric effect and is restricted to crystalline, non-centrosymmetric and polar matter. Its main application is the utilization in infrared radiation sensors, but usage for waste heat energy harvesting or chemical catalysis is also possible. A precise quantification, i.e. the measurement of the pyroelectric coefficient p, is inevitable to assess the performance of a material. Hence, a comprehensive overview is provided in this work, which summarizes and evaluates the available techniques to characterize p. A setup allowing the fully automated measurement of p by utilizing the Sharp-Garn method and the measurement of ferroelectric hysteresis loops is described. It was used to characterize and discuss the behavior of p with respect to the temperature of the doped bulk III-V compound semiconductors gallium nitride and aluminum nitride and thin films of doped hafnium oxide, as reliable data for these materials is still missing in the literature. Here, the nitride-based semiconductors show a comparable small p and temperature dependency, which is only slightly affected by the incorporated dopant, compared to traditional ferroelectric oxides. In contrast, p of HfO2 thin films is about an order of magnitude larger and seems to be affected by the present dopant and its concentrations, as it is considered to be responsible for the formation of the polar orthorhombic phase.:1. Motivation and Introduction 2. Fundamentals 2.1. Dielectrics and their Classification 2.2. Polarization 2.3. Pyroelectricity 2.4. Ferroelectricty 2.5. Phase Transitions 2.6. Applications and Figures of Merit 3. Measurement Methods for the Pyroelectric Coefficient 3.1. General Considerations 3.1.1. Heating Concepts 3.1.2. Thermal Equilibrium 3.1.3. Electric Contact 3.1.4. Separation of Contributions 3.1.5. Thermally Stimulated Currents 3.2. Static Methods 3.2.1. Charge Compensation Method 3.2.2. Hysteresis Measurement Method 3.2.3. Direct Electrocaloric Measurement 3.2.4. Flatband Voltage Shift 3.2.5. X-ray Photoelectron Spectroscopy Method 3.2.6. X-ray Diffraction and Density Functional Theory 3.3. Dynamic Methods 3.3.1. Temperature Ramping Methods 3.3.2. Optical Methods 3.3.3. Periodic Pulse Technique 3.3.4. Laser Intensity Modulation Methods 3.3.5. Harmonic Waveform Techniques 4. Pyroelectric and Ferroelectric Characterization Setup 4.1. Pyroelectric Measurement Setup 4.1.1. Setup and Instrumentation 4.1.2. Automated Sharp-Garn Evaluation of Pyroelectric Coefficients 4.1.3. Further Examples 4.2. Hysteresis Loop Measurements 4.2.1. Instrumentation 4.2.2. Measurement and Evaluation 4.2.3. Examples 5. Investigated Material Systems 5.1. III-Nitride Bulk Semiconductors GaN and AlN 5.1.1. General Structure and Spontaneous Polarization 5.1.2. Applications 5.1.3. Crystal Growth and Doping 5.1.4. Pyroelectricity 5.2. Hafnium Oxide Thin Films 5.2.1. General Structure and Applications 5.2.2. Polar Properties in Thin Films 5.2.3. Doping Effects 5.2.4. Pyro- and Piezoelectricity 6. Results 6.1. The Pyroelectric Coefficient of Free-standing GaN and AlN 6.1.1. Sample Preparation 6.1.2. Pyroelectric Measurements 6.1.3. Lattice Influence 6.1.4. Slope Differences 6.2. Pyroelectricity of Doped Hafnium Oxide 6.2.1. Sharp-Garn Measurement on Thin Films 6.2.2. Effects of Silicon Doping 6.2.3. Dopant Comparison 7. Summary and Outlook A. Pyroelectric Current and Phase under Periodic Thermal Excitation B. Loss Current Correction for Shunt Method C. Conductivity Correction D. Comparison of Pyroelectric Figures of Merit Bibliography Publication List AcknowledgmentsDie Änderung der spontanen Polarisation durch eine Änderung der Temperatur ist bekannt als der pyroelektrische Effekt, welcher auf kristalline, nicht-zentrosymmetrische und polare Materie beschränkt ist. Er findet vor allem Anwendung in Infrarot-Strahlungsdetektoren, bietet aber weitere Anwendungsfelder wie die Niedertemperatur-Abwärmenutzung oder die chemische Katalyse. Eine präzise Quantifizierung, d. h. die Messung des pyroelektrischen Koeffizienten p, ist unabdingbar, um die Leistungsfähigkeit eines Materials zu bewerten. Daher bietet diese Arbeit u.a. einen umfassenden Überblick und eine Bewertung der verfügbaren Messmethoden zur Charakterisierung von p. Weiterhin wird ein Messaufbau beschrieben, welcher die voll automatisierte Messung von p mit Hilfe der Sharp-Garn Methode und auch die Charakterisierung der ferroelektrischen Hystereseschleife ermöglicht. Aufgrund fehlerender Literaturdaten wurde dieser Aufbau anschließend genutzt, um den temperaturabhängigen pyroelektrischen Koeffizienten der dotierten III-V-Verbindungshalbleiter Gallium- und Aluminiumnitrid sowie dünner Schichten bestehend aus dotiertem Hafniumoxid zu messen und zu diskutieren. Im Vergleich zu klassichen ferroelektrischen Oxiden zeigen dabei die nitridbasierten Halbleiter einen geringen pyroelektrischen Koeffizienten und eine kleine Temperaturabhängigkeit, welche auch nur leicht durch den vorhandenen Dotanden beeinflusst werden kann. Dagegen zeigen dünne Hafniumoxidschichten einen um eine Größenordnung größeren pyroelektrischen Koeffizienten, welcher durch den anwesenden Dotanden und seine Konzentration beeinflusst wird, da dieser verantwortlich für die Ausbildung der polaren, orthorhombischen Phase gemacht wird.:1. Motivation and Introduction 2. Fundamentals 2.1. Dielectrics and their Classification 2.2. Polarization 2.3. Pyroelectricity 2.4. Ferroelectricty 2.5. Phase Transitions 2.6. Applications and Figures of Merit 3. Measurement Methods for the Pyroelectric Coefficient 3.1. General Considerations 3.1.1. Heating Concepts 3.1.2. Thermal Equilibrium 3.1.3. Electric Contact 3.1.4. Separation of Contributions 3.1.5. Thermally Stimulated Currents 3.2. Static Methods 3.2.1. Charge Compensation Method 3.2.2. Hysteresis Measurement Method 3.2.3. Direct Electrocaloric Measurement 3.2.4. Flatband Voltage Shift 3.2.5. X-ray Photoelectron Spectroscopy Method 3.2.6. X-ray Diffraction and Density Functional Theory 3.3. Dynamic Methods 3.3.1. Temperature Ramping Methods 3.3.2. Optical Methods 3.3.3. Periodic Pulse Technique 3.3.4. Laser Intensity Modulation Methods 3.3.5. Harmonic Waveform Techniques 4. Pyroelectric and Ferroelectric Characterization Setup 4.1. Pyroelectric Measurement Setup 4.1.1. Setup and Instrumentation 4.1.2. Automated Sharp-Garn Evaluation of Pyroelectric Coefficients 4.1.3. Further Examples 4.2. Hysteresis Loop Measurements 4.2.1. Instrumentation 4.2.2. Measurement and Evaluation 4.2.3. Examples 5. Investigated Material Systems 5.1. III-Nitride Bulk Semiconductors GaN and AlN 5.1.1. General Structure and Spontaneous Polarization 5.1.2. Applications 5.1.3. Crystal Growth and Doping 5.1.4. Pyroelectricity 5.2. Hafnium Oxide Thin Films 5.2.1. General Structure and Applications 5.2.2. Polar Properties in Thin Films 5.2.3. Doping Effects 5.2.4. Pyro- and Piezoelectricity 6. Results 6.1. The Pyroelectric Coefficient of Free-standing GaN and AlN 6.1.1. Sample Preparation 6.1.2. Pyroelectric Measurements 6.1.3. Lattice Influence 6.1.4. Slope Differences 6.2. Pyroelectricity of Doped Hafnium Oxide 6.2.1. Sharp-Garn Measurement on Thin Films 6.2.2. Effects of Silicon Doping 6.2.3. Dopant Comparison 7. Summary and Outlook A. Pyroelectric Current and Phase under Periodic Thermal Excitation B. Loss Current Correction for Shunt Method C. Conductivity Correction D. Comparison of Pyroelectric Figures of Merit Bibliography Publication List Acknowledgment

    Pyroelectricity of silicon-doped hafnium oxide thin films

    Get PDF
    Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm−2 and −46.2 µC K−1 m−2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 °C to 170 °C, which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications

    Characterization of Novel Pyroelectrics: From Bulk GaN to Thin Film HfO2

    Get PDF
    The change of the spontaneous polarization due to a change of temperature is known as the pyroelectric effect and is restricted to crystalline, non-centrosymmetric and polar matter. Its main application is the utilization in infrared radiation sensors, but usage for waste heat energy harvesting or chemical catalysis is also possible. A precise quantification, i.e. the measurement of the pyroelectric coefficient p, is inevitable to assess the performance of a material. Hence, a comprehensive overview is provided in this work, which summarizes and evaluates the available techniques to characterize p. A setup allowing the fully automated measurement of p by utilizing the Sharp-Garn method and the measurement of ferroelectric hysteresis loops is described. It was used to characterize and discuss the behavior of p with respect to the temperature of the doped bulk III-V compound semiconductors gallium nitride and aluminum nitride and thin films of doped hafnium oxide, as reliable data for these materials is still missing in the literature. Here, the nitride-based semiconductors show a comparable small p and temperature dependency, which is only slightly affected by the incorporated dopant, compared to traditional ferroelectric oxides. In contrast, p of HfO2 thin films is about an order of magnitude larger and seems to be affected by the present dopant and its concentrations, as it is considered to be responsible for the formation of the polar orthorhombic phase.:1. Motivation and Introduction 2. Fundamentals 2.1. Dielectrics and their Classification 2.2. Polarization 2.3. Pyroelectricity 2.4. Ferroelectricty 2.5. Phase Transitions 2.6. Applications and Figures of Merit 3. Measurement Methods for the Pyroelectric Coefficient 3.1. General Considerations 3.1.1. Heating Concepts 3.1.2. Thermal Equilibrium 3.1.3. Electric Contact 3.1.4. Separation of Contributions 3.1.5. Thermally Stimulated Currents 3.2. Static Methods 3.2.1. Charge Compensation Method 3.2.2. Hysteresis Measurement Method 3.2.3. Direct Electrocaloric Measurement 3.2.4. Flatband Voltage Shift 3.2.5. X-ray Photoelectron Spectroscopy Method 3.2.6. X-ray Diffraction and Density Functional Theory 3.3. Dynamic Methods 3.3.1. Temperature Ramping Methods 3.3.2. Optical Methods 3.3.3. Periodic Pulse Technique 3.3.4. Laser Intensity Modulation Methods 3.3.5. Harmonic Waveform Techniques 4. Pyroelectric and Ferroelectric Characterization Setup 4.1. Pyroelectric Measurement Setup 4.1.1. Setup and Instrumentation 4.1.2. Automated Sharp-Garn Evaluation of Pyroelectric Coefficients 4.1.3. Further Examples 4.2. Hysteresis Loop Measurements 4.2.1. Instrumentation 4.2.2. Measurement and Evaluation 4.2.3. Examples 5. Investigated Material Systems 5.1. III-Nitride Bulk Semiconductors GaN and AlN 5.1.1. General Structure and Spontaneous Polarization 5.1.2. Applications 5.1.3. Crystal Growth and Doping 5.1.4. Pyroelectricity 5.2. Hafnium Oxide Thin Films 5.2.1. General Structure and Applications 5.2.2. Polar Properties in Thin Films 5.2.3. Doping Effects 5.2.4. Pyro- and Piezoelectricity 6. Results 6.1. The Pyroelectric Coefficient of Free-standing GaN and AlN 6.1.1. Sample Preparation 6.1.2. Pyroelectric Measurements 6.1.3. Lattice Influence 6.1.4. Slope Differences 6.2. Pyroelectricity of Doped Hafnium Oxide 6.2.1. Sharp-Garn Measurement on Thin Films 6.2.2. Effects of Silicon Doping 6.2.3. Dopant Comparison 7. Summary and Outlook A. Pyroelectric Current and Phase under Periodic Thermal Excitation B. Loss Current Correction for Shunt Method C. Conductivity Correction D. Comparison of Pyroelectric Figures of Merit Bibliography Publication List AcknowledgmentsDie Änderung der spontanen Polarisation durch eine Änderung der Temperatur ist bekannt als der pyroelektrische Effekt, welcher auf kristalline, nicht-zentrosymmetrische und polare Materie beschränkt ist. Er findet vor allem Anwendung in Infrarot-Strahlungsdetektoren, bietet aber weitere Anwendungsfelder wie die Niedertemperatur-Abwärmenutzung oder die chemische Katalyse. Eine präzise Quantifizierung, d. h. die Messung des pyroelektrischen Koeffizienten p, ist unabdingbar, um die Leistungsfähigkeit eines Materials zu bewerten. Daher bietet diese Arbeit u.a. einen umfassenden Überblick und eine Bewertung der verfügbaren Messmethoden zur Charakterisierung von p. Weiterhin wird ein Messaufbau beschrieben, welcher die voll automatisierte Messung von p mit Hilfe der Sharp-Garn Methode und auch die Charakterisierung der ferroelektrischen Hystereseschleife ermöglicht. Aufgrund fehlerender Literaturdaten wurde dieser Aufbau anschließend genutzt, um den temperaturabhängigen pyroelektrischen Koeffizienten der dotierten III-V-Verbindungshalbleiter Gallium- und Aluminiumnitrid sowie dünner Schichten bestehend aus dotiertem Hafniumoxid zu messen und zu diskutieren. Im Vergleich zu klassichen ferroelektrischen Oxiden zeigen dabei die nitridbasierten Halbleiter einen geringen pyroelektrischen Koeffizienten und eine kleine Temperaturabhängigkeit, welche auch nur leicht durch den vorhandenen Dotanden beeinflusst werden kann. Dagegen zeigen dünne Hafniumoxidschichten einen um eine Größenordnung größeren pyroelektrischen Koeffizienten, welcher durch den anwesenden Dotanden und seine Konzentration beeinflusst wird, da dieser verantwortlich für die Ausbildung der polaren, orthorhombischen Phase gemacht wird.:1. Motivation and Introduction 2. Fundamentals 2.1. Dielectrics and their Classification 2.2. Polarization 2.3. Pyroelectricity 2.4. Ferroelectricty 2.5. Phase Transitions 2.6. Applications and Figures of Merit 3. Measurement Methods for the Pyroelectric Coefficient 3.1. General Considerations 3.1.1. Heating Concepts 3.1.2. Thermal Equilibrium 3.1.3. Electric Contact 3.1.4. Separation of Contributions 3.1.5. Thermally Stimulated Currents 3.2. Static Methods 3.2.1. Charge Compensation Method 3.2.2. Hysteresis Measurement Method 3.2.3. Direct Electrocaloric Measurement 3.2.4. Flatband Voltage Shift 3.2.5. X-ray Photoelectron Spectroscopy Method 3.2.6. X-ray Diffraction and Density Functional Theory 3.3. Dynamic Methods 3.3.1. Temperature Ramping Methods 3.3.2. Optical Methods 3.3.3. Periodic Pulse Technique 3.3.4. Laser Intensity Modulation Methods 3.3.5. Harmonic Waveform Techniques 4. Pyroelectric and Ferroelectric Characterization Setup 4.1. Pyroelectric Measurement Setup 4.1.1. Setup and Instrumentation 4.1.2. Automated Sharp-Garn Evaluation of Pyroelectric Coefficients 4.1.3. Further Examples 4.2. Hysteresis Loop Measurements 4.2.1. Instrumentation 4.2.2. Measurement and Evaluation 4.2.3. Examples 5. Investigated Material Systems 5.1. III-Nitride Bulk Semiconductors GaN and AlN 5.1.1. General Structure and Spontaneous Polarization 5.1.2. Applications 5.1.3. Crystal Growth and Doping 5.1.4. Pyroelectricity 5.2. Hafnium Oxide Thin Films 5.2.1. General Structure and Applications 5.2.2. Polar Properties in Thin Films 5.2.3. Doping Effects 5.2.4. Pyro- and Piezoelectricity 6. Results 6.1. The Pyroelectric Coefficient of Free-standing GaN and AlN 6.1.1. Sample Preparation 6.1.2. Pyroelectric Measurements 6.1.3. Lattice Influence 6.1.4. Slope Differences 6.2. Pyroelectricity of Doped Hafnium Oxide 6.2.1. Sharp-Garn Measurement on Thin Films 6.2.2. Effects of Silicon Doping 6.2.3. Dopant Comparison 7. Summary and Outlook A. Pyroelectric Current and Phase under Periodic Thermal Excitation B. Loss Current Correction for Shunt Method C. Conductivity Correction D. Comparison of Pyroelectric Figures of Merit Bibliography Publication List Acknowledgment

    Waste heat energy harvesting by use of BaTiO3 for pyroelectric hydrogen generation

    No full text
    The generation of hydrogen as a chemical energy storage for power generation via fuel cells or for the synthesis of fuels has attained a strong interest in recent years. By way of example this is realized using electrolysis of water with the help of excess electricity of wind power plants. However with low temperature grade waste heat as it could be found in many industrial and household applications, there is another source of usable energy for this purpose. In a first pragmatic experimentation we investigated the pyroelectric effect of ferroelectric BaTiO3 combined with a temperature cycling to generate hydrogen from water. Therefore, single crystals ground to powder were brought into contact with distilled water and set to a cyclical temperature change from 40 °C to 70 °C. With the help of a highly selective and sensitive measuring system based on a coulometric solid electrolyte detector we could provide a first indication of pyroelectric generated hydrogen by a fraction of 300 Vol.-ppb in the sample gas

    Sample chamber for synchrotron based in-situ X-ray diffraction experiments under electric fields and temperatures between 100 K and 1250 K

    Get PDF
    Many scientific questions require X-ray experiments conducted at varying temperatures, sometimes combined with the application of electric fields. Here, a customized sample chamber developed for beamlines P23 and P24 of PETRA III at DESY to suit these demands is presented. The chamber body consists mainly of standard vacuum parts housing the heater/cooler assembly supplying a temperature range of 100 K to 1250 K and an xyz manipulator holding an electric contact needle for electric measurements at both high voltage and low current. The chamber is closed by an exchangeable hemispherical dome offering all degrees of freedom for single-crystal experiments within one hemisphere of solid angle. The currently available dome materials (PC, PS, PEEK polymers) differ in their absorption and scattering characteristics, with PEEK providing the best overall performance. The article further describes heating and cooling capabilities, electric characteristics, and plans for future upgrades of the chamber. Examples of applications are discussed
    corecore